## CSIR UGC NET

## MATHEMATICAL SCIENCE

 SOLVED SAMPLE PAPER* DETAILED SOLUTIONS


CSIR NET - MATHEMATICAL SCIENCE MOCK TEST PAPER

- This paper contains 60 Multiple Choice Questions
- part A 15, part B 25 and part C 20
- Each question in Part 'A' carries two marks
- Part 'B' carries 3 marks
- Part 'C' carries 4.75 marks respectively.
- There will be negative marking @ 0.5 marks in Part ' $A$ ', 0.75 marks in Part ' $B$ ' for each wrong answer.
- Part 'C' has more than 1 correct options
- Pattern of questions : MCQs
- Total marks :200
- Duration of test : 3 Hours

For IIT-JAM, JNU, GATE, NET, NIMCET and Other Entrance Exams
Pot No.-̨, Muhana Mandi Road, Jaipur-302020, Mbb.:- 9001297111, www.ypmclasses.com
Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

Website: www.vpmclasses.com

Mobile: 9001297111,9829567114

E-Mail: info@vpmclasses.com

## PART A (1-15)

1. Average yield of a product in different years is shown in the histogram. If the vertical bars indicate variability during the year, then during which year was the percent variability over the average of that year the least?

(1) 2000
(2) 2001
(3) 2002
(4) 2003
2. $A$ rectangular sheet $A B C D$ is folded in such a way that vertex $A$ meets vertex $C$, thereby forming a line $P Q$. Assuming $A B=3$ and $B C=4$, find $P Q$. Note that $A P=P C$ and $A Q$ = QC

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

(1) $\frac{13}{4}$
(2) $\frac{15}{4}$
(3) $\frac{17}{4}$
(4) $\frac{19}{4}$
3. Density of a rice grain is $1.5 \mathrm{~g} / \mathrm{cc}$ and bulk density of rice heap is $0.80 \mathrm{~g} / \mathrm{cc}$. If a 1 litre container is completely filled with rice, what will be the approximate volume of pore space in the container?
(1) 350 cc
(2) 465 cc
(3) 550 cc
(4) 665 cc
4. A peacock perched on the top of a 12 m high tree spots a snake moving towards its hole at the base of the tree from a distance equal to thrice the height of the tree. The peacock flies

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
towards the snake in a straight line and they both move at the same speed. At what distance from the base of the tree will the peacock catch the snake?
(1) 16 m
(2) 18 m
(3) 14 m
(4) 12 m
5. The map given below shows a meandering river following a semi-circular path, along which two villages are located at $A$ and $B$. The distance between $A$ and $B$ along the east-west direction in the map is 7 cm . What is the length of the river between $A$ and $B$ in the ground?

(1) 1.1 km
(2) 3.5 km
(3) 5.5 km
(4) 11.0 km
6. How many nine-digit positive integers are there, the sum of squares of whose digits is 2?
(1) 8
(2) 9
(3) 10
(D) 11

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
7. A bird leaves its nest and flies away. Its distance $x$ from the nest is plotted as a function of time $t$. Which of the following plots cannot be right?
(1)


(2)
nest t
(3)
nes
8. What is the next number in the following sequence?

39, 42, 46, 50, ...
(1) 52
(2) 53
(3) 54
(D) 55
9. A solid cylinder of basal area A was held dipped in water in a cylindrical vessel of basal area $2 A$ vertically such that a length $h$ of the cylinder is immersed. The lower tip of the cylinder is at a height h from the water in the vessel when the cylinder is taken out?

(1) 2 h
(2) $\frac{3}{2} h$
(3) $\frac{4}{3} h$
(4) $\frac{5}{4} h$
10. How many pairs of positive integers have gcd 20 and Icm 600?
(gcd = greatest common divisor; lcm = least common multiple)
(1) 4
(2) 0
(3) 1
(4) 7
11. Consider a right-angled triangle $A B C$ where $A B=A C=3$. A rectangle $A P O Q$ is drawn inside it, as shown, such that the height of the rectangle is twice its width. The rectangle is moved horizontally by a distance 0.2 as shown schematically in the diagram (not to scale).

Area of $\triangle A B C$
Area of $\triangle$ OST ?
(1) 625
(2) 400
(3) 225
(4) 125
12. A shopkeeper purchases a product for Rs. 100 and sells it making a profit of $10 \%$. The customer resells it to the same shopkeeper incurring a loss of $10 \%$. In these dealings the shopkeeper makes
(1) no profit, no loss

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(2) Rs. 11
(3) Re. 1
(4) Rs. 20
13. In 450 g of pure coffee powder 50 g of chicory is added. A person buys 100 g of this mixture and adds 5 g of chicory to that. What would be the rounded-off percentage of chicory in this final mixture?
(1) 10
(2) 5
(3) 14
(4) 15
14. Following table provides figures (in rupees) on annual expenditure of a firm for two years 2010 and 2011.

| Category | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 1 1}$ |
| :--- | :---: | :---: |
| Raw material | 5200 | 6240 |
| Power \& fuel | 7000 | 9450 |
| Salary \& wages | 9000 | 12600 |
| Plant \& machinery | 20000 | 25000 |
| Advertising | 15000 | 19500 |
| Research \& Development | 22000 | 26400 |

In 2011, which of the following two categories have registered increase by same percentage?
(1) Raw material and Salary \& wages
(2) Salary \& wages and Advertising

Mobile: 9001297111,9829567114

E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) Power \& fuel and Advertising
(4) Raw material and Research \& Development
15. Find the missing sequence in the letter series.

B, FH, LNP, --------.
(1) SUMY
(2) TUVW
(3) TVXZ
(4) TWXZ

PART B(16-40)
16. Suppose a population $A$ has 100 observations $101,102, \ldots 200$ and another population $B$ has 100 observations $151,152, \ldots, 250$. If $V_{A}$ and $V_{B}$ represent the variances of the two populations, respectively, then $\bar{V}_{B}$ is
(1) 1
(2) ${ }^{\frac{9}{4}}$
(3) $\frac{4}{9}$
(4) ${ }^{\frac{2}{3}}$
17. Let $y_{1}<y_{2}<y_{3}<y_{4}$ denote the order statistics of a random sample of size 4 from a distribution having Pdf

$$
f(x)= \begin{cases}2 x, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

then $P\left(y_{3}>{ }^{\frac{1}{2}}\right)$ equals
(1) $\frac{243}{512}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(2) $\frac{729}{512}$
(3) $\frac{243}{256}$
(4) $\frac{81}{64}$
18. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{S}: \mathrm{W} \rightarrow \Omega$ be two linear transformations then which one of the following is the false statement?
(1) If $S$ and $T$ one one-one onto then $S T$ is one-one onto and $(S T)^{-1}=T^{-1} S^{-1}$
(2) If ST is one -one then T is one-one
(3) If ST is onto then S is onto
(4) If ST is onto then T is onto
19. If $Z_{1}=3-4 i$ and $Z_{2}=-4+3 i$ then angle between $Z_{1} Z_{2}$ is given by,
(1) $\cos ^{-10} .96$
(2) $\pi-\cos ^{-1} 0.96$
(3) $\cos ^{-1} 0.47$
(4) $\pi-\cos ^{-1} 0.47$
20. $I=\int_{\gamma} x d z$ where $\gamma$ is the boundary of the square $[0,1] \times[0,1]$ with $c$ considered as $R^{2}$ is given by
(1)
(2) 0
(3) $2 \pi i$
(4) i
21. Which of the following statement is incorrect about bilinear transformation?
(1) The inverse of bilinear transformation is bilinear transformation
(2) Composition of bilinear transformation is bilinear transformation

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) A bilinear transformation which fixes 1 is identity transformation
(4) Every bilinear transformation maps circles into circles
22. The function $f: \square \rightarrow \square$ defined by $f(x)=\left(x^{2}+1\right)^{35}$ for all real $x \in \square$ is,
(1) one-one but not onto
(2) onto but not one-one
(3) neither one-one nor onto
(3) both one-one and onto
23. The complete integral of $q=3 p^{2}$ is given by,
(1) $z=a x+3 a^{2}+c$
(2) $z=a x+a^{2}+3$
(3) $z^{2}=a^{2} a x$
(4) $z=a x+b$
24. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{P}+n^{-P}}$, then which of the following is/are incorrect?
(1) Convergent if $P>1$
(2) Divergent if $\mathrm{P} \leq 1$
(3) Convergent if $\mathrm{P}<-1$
(4) Divergent if $-1 \leq \mathrm{P} \leq 1$
25. If $2^{n}-1$ is prime for $n>1$ then $n$ is,
(1) a prime
(2) a composite
(3) any natural number
(4) only odd prime
26. The order of smallest non-commutative ring is
(1) 1

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(2) 2
(3) 3
(4) 4
27. The Hermite's interpolation polynomial which fits the data

| $x$ | 0 | 4 |
| :---: | :---: | :---: |
| $f=f(x)$ | 0 | 2 |
| $y^{\prime}=f^{\prime}(x)$ | 1 | 0 |

is
(1) $\frac{1}{8}\left(8 x-x^{2}\right)$
(2) $\frac{1}{16}\left(2 x-x^{2}\right)$
(3) $\left(2 x-x^{2}\right)$
(4) $\left(16 x-2 x^{2}\right)$
28. Find the equation of curve fixed between two point $\left(0, \frac{1}{3}\right)\left(\frac{\pi}{2} \frac{1}{3}\right)$ where integral $I=\int_{0}^{\pi / 2}\left(y^{12}-y^{2}+4 y \sin ^{2} x\right) d x$
(1) $y=(2 \sin x+\cos 2 x) / 3$
(2) $y=(2 \sin x+\sin 2 x) / 3$
(3) $y=(2 \cos x+\cos 2 x) / 3$
(4) $y=(\cos x+\sin 2 x) / 3$
29. Let V be the space of all real valued continuous functions. Define $\mathrm{T} ; \mathrm{V} \rightarrow \mathrm{V}$ by $(\mathrm{Tf})(\mathrm{x})=$
$\int_{0} f(t) d t$
then find the eigen values of $T$.
(1) 0
(2) 1

Website: www.vpmclasses.com

Mobile: 9001297111,9829567114

E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) C (any arbitrary natural no.)
(4) Does not exist.
30. When $a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos n \theta \cosh (2 \cos \theta) d \theta$
(1)
$\cosh \left(z+\frac{1}{z}\right)=a_{0}$
(2)
$\cosh \left(z+\frac{1}{z}\right)=\sum_{n=1}^{\infty} a_{n}$
(3)
$\cosh \left(z+\frac{1}{z}\right)=a_{0}+\sum_{n=1}^{\infty} a_{n}\left(z^{n}+\frac{1}{z^{n}}\right)$
(d)
$\cosh \left(z+\frac{1}{z}\right)=0$
31. There are 600 business students in the post-graduate department of a university, and probability for any student to need a copy of a particular textbook from the university library on any day is 0.05 . How many copies of the book should be kept in the university library so that the probability may be greater than 0.90 that none of the students needing a copy from the library has to come back disappointed. (Use normal approximation to the binomial probability law).
(1) 73
(2) 30
(3) 37
(4) 80
32. Consider the power series $\sum a_{n} z^{n^{4}}$, where $a_{0}=1$ and $a_{n}=a_{n-1} 4^{-n^{3}}, n \geq 1$
(1) Radius of Convergent is 4
(2) Radius of Convergent is 2

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) Radius of Convergent is $\sqrt{2}$
(4) Radius of Convergent is 1
33. Let $9(x)=2 f\left(\frac{x}{2}\right)+f(2-x)$ and $f^{\prime \prime}(x)<0 \forall x \in(0,2)$. Then $g(x)$ increases in,
(1) $\left(\frac{1}{2}, 2\right)$
(2) $\left(\frac{4}{3}, 2\right)$
(3) $(0,2)$
(4) $\left(0, \frac{4}{3}\right)$
34. Divergence Criteria states that
(1) If a sequence $X=\left\{x_{n}\right\}$ of real number has two convergent subsequences $X^{\prime}=\left\{{ }^{X_{k}}\right\}$ and $X^{\prime \prime}=\left\{{ }^{X_{k}}\right\}$ whose limits are equal then $X$ is divergent.
(2) If a sequence $X=\left\{x_{n}\right\}$ of real number is bounded then $X$ is divergent.
(3) If a sequence $X=\left\{x_{n}\right\}$ of real numbers has two convergent Subsequence $X^{\prime}=\left\{{ }^{X_{k}}\right\}$ and $X^{\prime \prime}=\left\{{ }^{X_{\nwarrow}}\right\}$ whose limits are not equal then $X$ is divergent.
(4) If a sequence $X=\left\{x_{n}\right\}$ of real numbers is unbounded then $X$ is convergent
35. Let $I$ be an interval and let $f: I \rightarrow R$ be strictly monotone on I. Let $J:=f(I)$ and let $g: J \rightarrow R$ be the function inverse to $f$. If $f$ is differentiable on $I$ and $f^{\prime}(x) \neq 0$ for $x \leq I$, then $g$ is
differentiable on J and $\mathrm{g}^{\prime}=\frac{1}{\mathrm{f}^{\prime} \mathrm{og}}$
then,
(1) $g^{\prime}=\frac{1}{9}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(2) $g^{\prime}=\frac{1}{f \circ g^{\prime}}$
(3) $g^{\prime}=\frac{1}{f^{\prime} \circ g}$
(4) $g^{\prime}=\frac{1}{f o g}$
36. Find the quadratic equation $\mathrm{eq}^{\mathrm{n}}$ in $\lambda$ whose roots are the Eigen values of the integral equation

$$
g(x)=\lambda^{\int_{0}^{1}\left(2 x t-4 x^{2}\right)} g(t) d t
$$

(1) $\lambda^{2}+6 \lambda 9=0$
(2) $\lambda^{2}-6 \lambda+9=0$
(3) $\lambda^{2}-6 \lambda-9=0$
(4) $\lambda^{2}+6 \lambda-9=0$
37. Find the Resolvent kernal of the integral equation

$$
g(x)=x+\int_{0}^{1 / 2} g(x) d t
$$

(1) 0
(2) 1
(3) 2
(4) x
38. A uniform rod $A B$ of length $8 a$ is suspended from a fixed point $O$ by means of light inexcusable string, of length 13a, attached to B. If the system is slightly displaced in a vertical plane the lagrange's $\theta$-equation is
(1) $61^{\ddot{\theta}}+39^{\ddot{\phi}}=-^{\frac{3 g}{a}} \theta$
(2) $61 \ddot{\theta}+39^{\ddot{\phi}}=\frac{3 g}{a} \theta$

Website: www.vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) $4 \ddot{\theta}+13^{\ddot{\phi}}=-^{\frac{g}{a}} \theta$
(4) $4 \ddot{\theta}+13^{\ddot{\phi}}=\frac{\underline{g}}{a} \theta$
39. The modified Newton - Raphson's method

$$
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

given
(1) a non - quadratic convergence when the equation $f(x)=0$ has a pair of double roots in the neighbourhood of $x=x_{n}$.
(2) a quadratic convergence when the equation $f(x)=0$ has a pair of double roots in the neighborhood of $x=x_{n}$.
(3) a nonquadratic non-convergence.
(4) None of the above.
40. Let $T$ be a linear operator on $C^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$ Let $\beta=\left\{\epsilon_{1}=(1,0), \in_{2}=(0\right.$,
1), $\beta^{\prime}=\left\{\alpha_{1}=(1, i), \alpha_{2}=(-i, 2)\right\}$ be ordered basis for $C^{2}$. What is the matrix of $T$ relative to the pair $\beta, \beta^{\prime}$ ?
(1) $\left[\begin{array}{cc}0 & 2 \\ 0 & -i\end{array}\right]$
(2) $\left[\begin{array}{rr}2 & 0 \\ -i & 0\end{array}\right]$
(3) $\left[\begin{array}{cc}0 & 0 \\ 2 & -i\end{array}\right]$
(4) $\left[\begin{array}{cc}2 & -i \\ 0 & 0\end{array}\right]$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

## PART C(41-60)

41. Let $R_{\infty}$ be the extended set of real numbers the function $d$ defined by

$$
d(x, y)=|f(x)-f(y)| \quad \forall x, y \in R_{\infty}
$$

where $f(x)$ is given by

$$
f(x)=\left\{\begin{array}{cl}
\frac{x}{1+|x|} & \text { when }-\infty<x<\infty \\
1 & \text { when } x=\infty \\
-1 & \text { when } x=-\infty
\end{array}\right.
$$

Then-
(1) $\left(R_{\infty} d\right)$ is metric space
(2) $\left(R_{\infty} d\right)$ is bounded
(3) diameter of $\left(R_{\infty} d\right)$ is 2
(4) $R_{\infty}$ does not include $\infty$ or $-\infty$
42. Every bilinear transformation maps,
(1) circles into circles
(2) circles into lines
(3) lines into lines
(4) lines into circles
43. When interval of differencing is unity, then
(1) $\Delta\left(\frac{2}{x+2}\right)=2\left\{\frac{1}{x+3}-\frac{1}{x+2}\right\}$
(2) $\Delta\left(\frac{3}{x+2}\right)=3\left\{\frac{1}{x+4}-\frac{1}{x+3}\right\}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) $\Delta^{2}\left(\frac{5 x+12}{x^{2}+5 x+6}\right)=\frac{2(5 x+16)}{(x+2)(x+3)(x+4)(x+5)}$
(4) $\Delta^{2} x=x(\Delta x)$
44. Let $a_{1}, a_{2}, a_{3}, a_{4}$, $\qquad$ .are integers such that
(I) $\left|\mathrm{a}_{\mathrm{n}}\right|<\left|\mathrm{a}_{\mathrm{n}+1}\right| \forall \mathrm{n} \in \square$
${ }^{\text {(II) }} \mathrm{a}_{\mathrm{n}}$ divides $\mathrm{a}_{\mathrm{n}+1}, \forall \mathrm{n} \in \square$
(III) Some of integers divides each $\mathrm{a}_{\mathrm{n}}$, then which of the following(s) is/are not true?
(1) $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ cannot be convergent
(2) $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ converge absolutely
(3) $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ is convergent
(4) $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ converge conditionally
45. Let $T$ be a linear operator on $V$ and Let Rank $T^{2}=$ Rank $T$ then
(1) nullity $T^{2}=$ nullity $T$
(2) Range ${ }^{\top}$ T $\cap \mathrm{KerT}^{2}=\{0\}$
(3) Range ${ }^{T \cap K e t T}=\{0\}$
(4) Range ${ }^{\mathrm{T}^{2}} \Omega \mathrm{Ker} \mathrm{T}^{2}=\{0\}$
46. Which of the following as a linear transformation on $\square^{2}$ ?
(1) $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$
(2) $T\left(x_{1}, x_{2}\right)=\left(\sin x_{1}, x_{2}\right)$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) $T\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}\right)$
(4) $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, 0\right)$
47. $\quad \Sigma u_{n}(x)$ is a series of real valued functions defined as $u_{1}(x)=x$
$3 n=2,3 \ldots$ then ${ }^{\Sigma u_{n}(x)}$
(1) discontinuous
(2) non-uniformly convergent
(3) continuous
(4) can be integrated term by term
48. If $f(z)$ is analytic in any domain $D$ any function $g(z)$ defined as $g(z)=\bar{f}(\bar{z})$ is
(1) analytic everywhere
(2) analytic in D
(3) analytic in $D^{*}=\{z: \bar{z} \in D\}$
(4) if $f^{\prime}(z)=0$ in $D$ then $f(z)$ is free from $z$
49. If $f(z)$ is integrable along a curve c having finite length $\ell$ and if there exists a positive number $M$ such that $|f(z)| \leq M$ on $c$ then
(1)
$\left|\int_{c} f(z) d z\right|=$ constant
(2) $\left|\int_{c} f(z) d z\right|=0$
(3) $\left|\int_{c} f(z) d z\right| \leq e M$
(4)

$\frac{z_{5}[z]}{\left\langle x^{2}+2 x+2\right\rangle}$ is
(1) A field having 32 elements
(2) a field having 25 elements

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(3) a field having exactly 2 subfields
(4) isomorphic to $\frac{Z_{5}[z]}{\left\langle x^{2}-2 x+15\right\rangle}$
51. Let $P(x) \in \square[x]$ then $\frac{\square[x]}{\langle P(x)\rangle}$ be a field if ,
(1) $P(x)=x^{2}+1$
(2) $P(x)=x^{2}-1$
(3) $P(x)=x^{3}-x^{2}+x-1$
(4) $P(x)=x^{2}+x+1$
52. If $P_{3}(x)=x^{3}-5 x^{2}+17 x-3$ be on three-degree polynomial then if $\delta=\max _{0 \leq x \leq 4} \quad\left|\mathrm{P}_{3}(\mathrm{x})-\mathrm{P}_{2}(\mathrm{x})\right|$
where $P_{2}(x)$ is second degree polynomial
Then
(1) $\delta=2$
(2) for $x=0,1,4 ; \delta=2$
(3) for $x=3 \delta=$ does not exist,
(4) for $x=0, \delta=2$
53. Let $A=\left[a_{i j}\right]_{n} \times n$ be a matrix such that rows and columns of $A$ forms an orthonormal set

Then possible cases/case are
(1) $\mathrm{a}_{\mathrm{ij}} \in \mathbf{C}$ and $A$ is unitary
(2) $a_{i j} \in \mathbf{R}$ and $A$ is orthogonal
(3) aij $\in \mathbf{C}$ and $A$ is orthogonal
(4) $a_{i j} \in \mathbf{R}$ and $A$ is unitary
54. The Given differential equation

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\left[\frac{d}{d x}\left(x \frac{d}{d x}\right)-\frac{n^{2}}{x^{2}}\right] u=0 \text { with } u(0)=0 \text { and } u(1)=0 \text { have }
$$

(1) Linearly independent solution
(2) Green function defined on it
(3) $W$ ' $\left[u_{1}(x), u_{2}(x)\right]=0$
(4) $\mathrm{G}(\mathrm{x}, \xi)=0^{\forall \mathrm{x}}$
55. The functional $\int_{0}^{\pi / 2}\left(y^{\prime 2}-y^{2}+2 x y\right) d y$ with $y(0)=0$ and $y\left(\frac{\pi}{2}\right)=0$ is extremized by
(1) $y^{\prime \prime}+y=x$
(2) $y=x+\sin x+{ }^{\frac{\pi}{2} \cos x}$
(3) $y=x-\frac{\pi}{2} \sin x$
(4) $y^{\prime \prime}-y=x^{2}$
56. $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \cdots \cdots \ldots . . \int_{0}^{1} d x^{n}=$
(1) $\frac{1}{x!} \int_{1 / n}^{1}(x-t)^{n} d t$
(2)
(3)
(4) $\frac{1}{(n-1)!} \int_{0}^{1}(x-t)^{n-1} d t$
$\frac{1}{(n-1)!} \int_{0}^{1}(x-t)^{n-1} d t$
57. If $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of measurable functions

Then-
(1) $\operatorname{Supf}_{n}$ is measurable

Website: www.vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(2) $\inf _{n} f_{n}$ is measurable
(3) if $\left\{\left\{_{n}\right\}_{n=0}^{\infty}\right.$ converges pointwise to $f$ on $[a, b]$ then $f$ is measurable
(4) if $\operatorname{Lim}_{n \rightarrow \infty} f_{n}(x)=f(x)$ then $f$ is measurable.
58. $\quad X_{n}$ and $Y_{n}$ be two sequences of random variable Then-
(1) $X_{n}$ converges to $X$ in probability then $X_{n}$ converges to $X$ in distribution
(2) If $X_{n}$ converges to be (constant) in distribution then $x_{n}$ converges to be in probability
(3) $x_{n}$ converges $X$ in distribution and $Y_{n}$ converges in probability to 0 then $X_{n}+Y_{n}$ converges to X in distribution
(4) If $X_{n}$ converges to $X$ in distribution and $g$ is a continuous function $g\left(x_{n}\right)$ converges to $g(x)$ in distribution.
59. A random variable $x$ has the probability law $d F(x)=\frac{x}{b^{2}} e^{-x^{2} / 2 b^{2}} d x \quad 0 \leq x<\infty$ where $b$ is a parameter
Let $L$ be the distance between the quartiles Then
(1) $L=0$
(2) $\frac{L}{\sigma}$ is free from $b$
(3) $\sigma^{2}=b^{2}\left(2-\frac{\pi}{2}\right)$
(4) $Q_{3}=b \sqrt{2} \log \sqrt{4}$
60. Let $x^{2}(x+1)^{2} y^{\prime \prime}+\left(x^{2}-1\right) y^{\prime}+2 y=0$
be a differential equation then-
(1) $x=0$ is an ordinary point
(2) $x=0, x-1$ are singular points
(3) $x=0$ is irregular singular point

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
(4) $x=-1$ is regular singular point

## ANSWER KEY

| Question | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Answer | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{3}$ |
| Question | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ |
| Answer | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{3}$ | 1 | $\mathbf{2}$ | $\mathbf{1}$ | 4 | 1 | 1 | 4 | $\mathbf{3}$ |
| Question | $\mathbf{3 1}$ | $\mathbf{3 2}$ | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5}$ | $\mathbf{3 6}$ | $\mathbf{3 7}$ | $\mathbf{3 8}$ | $\mathbf{3 9}$ | $\mathbf{4 0}$ | $\mathbf{4 1}$ | $\mathbf{4 2}$ | $\mathbf{4 3}$ | $\mathbf{4 4}$ | $\mathbf{4 5}$ |
| Answer | $\mathbf{3}$ | 3 | 4 | 3 | 3 | 1 | 3 | 1 | 2 | 2 | $\mathbf{1 , 2}, \mathbf{3}$ | $\mathbf{1 , 2 , 3 , 4}$ | $\mathbf{1 , 2}, 3$ | $\mathbf{1 , 3 , 4}$ | $\mathbf{1 , 3}$ |
| Question | $\mathbf{4 6}$ | $\mathbf{4 7}$ | $\mathbf{4 8}$ | 49 | $\mathbf{5 0}$ | $\mathbf{5 1}$ | 52 | $\mathbf{5 3}$ | $\mathbf{5 4}$ | $\mathbf{5 5}$ | $\mathbf{5 6}$ | $\mathbf{5 7}$ | $\mathbf{5 8}$ | $\mathbf{5 9}$ | $\mathbf{6 0}$ |
| Answer | 1,4 | $1,2,4$ | 3,4 | 3 | 2,3 | 1,4 | $1,2,4$ | $1,2,3$ | 1,2 | 1,3 | 2 | $1,2,3,4$ | $1,2,3,4$ | 2,3 | $2,3,4$ |

## HINTS AND SOLUTIONS

## PART A(1-15)

1.(2) The percentage of variability over the average of that year
year $2000\left(\frac{50}{150} \times 100\right)=33.33 \%$

Website: www.vpmclasses.com

Mobile: 9001297111,9829567114

E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
year 2001 $\left(\frac{75}{250} \times 100\right)=30 \%$
year $2002\left(\frac{75}{200} \times 100\right)=37.5 \%$
year 2003 $\left(\frac{50}{100} \times 100\right)=50 \%$
2.(2)


$$
B C=4
$$

then from using pythagoras
$A C=5 \mathrm{~m}$
and $\angle \mathrm{CAB}=\theta$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
then $\quad \tan \theta=\frac{4}{3}=\tan 53^{\circ}$
Then in $\triangle \mathrm{PMQ}$
$\sec 37^{\circ}=\frac{\mathrm{PQ}}{\mathrm{PM}}$
Using $\triangle \mathrm{ABC}$
$\sec 37{ }^{\circ}=\frac{5}{4}$
Using (iii) in (ii)
$\frac{5}{4} \times P M=P Q$
$P Q=\frac{5}{4} \times 3=\frac{15}{4}$
3.(2) Using allegation Formula:

Quantity of Cheaper/ Quantity of dearer= (high value-mean value)/(mean value-low value) volume of pour Space/Volume of rice $=1.5-0.80 .8-0=78$
So volume of pour space $=1000 / 15 \times 7=466.66$ approximately 465 .
4.(1) Figure according to question $A D$ and $C D$ are equal because peacock and snake has equal speed.

Website: www.vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

let $\angle \mathrm{DAC}=\theta$
from the fig. $\angle \mathrm{DCA}=\theta$
and let $\angle \mathrm{ADB}=\Phi$
according to Geometry
$\Phi=2 \theta$
$\tan 20=\tan \Phi$
$2 \tan \theta$
$\overline{1-\tan ^{2} \theta}=\tan \Phi$
from the fig. $\tan \theta=36$


$$
\begin{aligned}
& \frac{2}{3} \\
& \frac{3}{8}=\frac{12}{x} \\
& \frac{2}{3} \times \frac{9}{8}=\frac{12}{x} \\
& \frac{1}{4 \times 4}=\frac{1}{x} \\
& x=16 m
\end{aligned}
$$

5(3) Distance of river on ground $=$ perimeter of semi circle

$$
\begin{aligned}
& =\pi \times r \\
& =3.14 \times 3.5 \\
& =11 \mathrm{~cm}
\end{aligned}
$$

According to Scale $=11 \times 50,000 \mathrm{~cm}$

$$
=5,50,000 \mathrm{~cm} \text { or } 5.5 \mathrm{~km} .
$$

6.(1) Given that the sum of squares of a nine digit number is 2 . Then. The possible numbers would be

Case.I:
100000001

$$
1^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+1^{2}=2
$$

Case II: 100000010

$$
1^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+1^{2}+0^{2}=2
$$

Case III: 100000100

$$
1^{2}+0^{2}+0^{2}+0^{2}+0^{2}+1^{2}+0^{2}+0^{2}=2
$$

Case IV: 100001000

Website: www.vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
1^{2}+0^{2}+0^{2}+0^{2}+0^{2}+1^{2}+0^{2}+0^{2}+0^{2}=2
$$

Case V : 100010000

$$
1^{2}+0^{2}+0^{2}+0^{2}+1^{2}+0^{2}+0^{2}+0^{2}+0^{2}=2
$$

Case VI : 100100000

$$
1^{2}+0^{2}+0^{2}+1^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}=2
$$

Case VII: 101000000

$$
1^{2}+0^{2}+1^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}=2
$$

Case VIII: 110000000

$$
1^{2}+1^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}=2
$$

7.(3) Given that
$y=x$
$y=1-x$ and $x=0$
$A B=B C$
\& $y=x=m_{1}=1$
$y=-x+1=m_{2}=-1$
so $m_{1} m_{2}=-1$, triangle is right - angled.

8.(2) The given sequence will follow the pattern $3,44,3$ $\qquad$
These are the difference between two consecutive numbers of the sequence.
So.

9.(2) Volume of vessel upto height 2 h is equal to 2 a * 2 h

Website: www.vpmclasses.com

Mobile: 9001297111,9829567114

E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Volume of vessel after removing cylinder

$$
\begin{equation*}
=2 A * h \tag{2}
\end{equation*}
$$

where $\quad h^{\prime} \quad=$ new height of water level.
Volume of water =Volume of vessel =Volume of solid after removing upto height 2 h Cylinder upto height cylinder h
$\Rightarrow 2 A * h=2 A * 2 h-A . h$

$$
\Rightarrow h^{\prime}=\frac{3}{2} h
$$

10.(1)

$$
\begin{aligned}
\mathrm{gcd} & =20 \\
\mathrm{lcm} & =600 \\
& \frac{x^{*} y}{\mathrm{gcd}} \\
\mathrm{lcm} & =9 \mathrm{l} \\
\mathrm{x}^{*} \mathrm{y} & =600 \times 20 \\
x^{*} y & =2^{5} \times 3^{1} \times 5^{3}
\end{aligned}
$$

$$
x \quad y
$$

$$
5^{1} \times 2^{2} \quad 5^{2} \times 2^{3} \times 3
$$

$$
5^{2} \times 2^{2} \quad 5^{1} \times 2^{3} \times 3
$$

$$
5^{2} \times 2^{3}
$$

$$
5^{1} \times 2^{2} \times 3
$$

$$
5^{2} \times 2^{2} \times 3
$$

$$
5^{1} \times 2^{3}
$$

11.(3)

$A B=A C=3$
$A Q=2 A P$

Area of

$$
\Delta \mathrm{ABC}=\frac{1}{2} \mathrm{~b} \times \mathrm{h}=\frac{1}{2}(3 \times 3)=\frac{1}{2}
$$

$$
\Delta \mathrm{QST}=\frac{1}{2}(\mathrm{Q} .2 \times \mathrm{Q} .2)=0.02
$$

Area of

Ratio $=$

$$
\frac{9 \times 100}{2 \times 0.02}=225
$$

12.(2) CP for the customer: $100+10=110$
and $10 \%$ of $110=11$ So customer sells shopkeeper at 99 . SO Shopkeeper makes a profit of Rs $10+1=11$.

2nd option is correct.
OR

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

A shopkeeper purchases a product Rs. 100 and sales it making a profit $10 \%$,then profit $=10$
Rs.Again customer resells it to the same increasing a loss of $10 \%$. Then total loss $=11$ Rs
$=$ Total profit to the shopkeeper $=1+10=11$ Rs
13.(3) 500 gm of Pure coffee contains $\rightarrow 50 \mathrm{gm}$ of chicory

100 gm of Pure coffee contains $\rightarrow 10 \mathrm{gm}$ of chicory
Now;
5 gm is added additionally
i.e., 105 gm of coffee $\rightarrow 15 \mathrm{gm}$ of chicory
$\%=\frac{15}{105} \times 100=\frac{100}{7}=14.2 \% \square 14 \%$
14.(4) Raw material and Research \& Development have registered increase by same percentage.

Increase in raw material from 2010 to $2011=6240-5200=1040$
Percent increase $=(1040 / 6240) \times 100=16.6 \%$
Increase in Research \& Development from 2010 to 2011

$$
=26400-22000=4400
$$

Percent increase $=(4400 / 26400) \times 100=16.6 \%$
15.(3) The formula used in this operation is as follows:

$$
B(+4), F(+2) H(+4), L(+2) N(+2) P(+4), T(+2) V(+2) X(+2) Z
$$

So next one is TVXZ

## PART B(16-40)

16.(1) $\bar{x}$ for population $A=\frac{101+102+\ldots+200}{100}=\frac{\frac{100}{2}[101+200]}{100}=150.5$
for population $B=\frac{151+152+\ldots+250}{100}=\frac{\frac{100}{2}[151+250]}{100} 200.5$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}=\frac{(101-150.5)^{2}+(102-150.5)^{2}+\ldots .+(200-1505)^{2}}{100} \\
&=\frac{(49.5)^{2}+(48.5)^{2}+\ldots+(0.5)^{2}+(0.5)^{2}+(1.5)^{2}+\ldots+(49.5)^{2}}{100} \\
& V_{B}=\frac{(151-200.5)^{2}+\ldots+(250-200.5)^{2}}{100}= \\
& \Rightarrow \frac{V_{A}}{V_{B}}=1
\end{aligned}
$$

17. (3) Since $Y_{1}<Y_{2}<Y_{3}<Y_{4}$ denote the order statistics of a random sample of size 4 from a distribution having pdf

$$
f(x)=\left\{\begin{array}{cc}
2 x & 0<x<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

We express the pdf of $Y_{3}$ in terms of $f(x)$ and $F(x)$ and then compute $P\left(\frac{1}{2}<Y_{3}\right)$. Here $F(x)=x^{2}$, provided that $0<x<1$, so that

$$
\begin{cases}\frac{4!}{2!1!}\left(y_{3}^{2}\right)^{2}\left(1-y_{3}^{2}\right)\left(2 y_{3}\right) & 0<y_{3}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Thus

$$
\begin{aligned}
P & \left(\frac{1}{2}<Y_{3}\right)=\int_{1 / 2}^{\infty} g_{3}\left(y_{3}\right) d y_{3} \\
& =\int_{1 / 2}^{1} 24\left(y_{3}^{5}-y_{3}^{5}\right) d y_{3}=\frac{243}{256}
\end{aligned}
$$

18. (4) (i) Since $S$ and $T$ are 1-1 onto, $S^{-1}$ and $T^{-1}$ exist.

Let $\quad S T(x)=S T(y)$
Then $S(T(x))=S(T(y))$
$\Rightarrow \mathrm{T}(\mathrm{x})=\mathrm{T}(\mathrm{y})$ as S is $1-1$
$\Rightarrow \mathrm{x}=\mathrm{y}$ as T is $1-1$ onto
$\Rightarrow$ ST is $1-1$ onto
Again $\mathrm{ST}: \mathrm{V} \rightarrow \mathrm{U}$, let $\mathrm{u} \in \mathrm{U}$ be any element then as S is in onto, $\exists \mathrm{w} \in \mathrm{W}$ s.t., $\mathrm{S}(\mathrm{w})=\mathrm{u}$ and as
$\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is onto $\exists v \in \mathrm{~V}$ s.t., $\mathrm{T}(v)=\mathrm{w}$
Now $\mathrm{T}(\mathrm{v})=\mathrm{w} \Rightarrow \mathrm{S}(\mathrm{T}(\mathrm{v}))=\mathrm{S}(\mathrm{w}) \Rightarrow \mathrm{ST}(\mathrm{v})=\mathrm{u}$
or that ST is onto.
Also
(ST) $\left(\mathrm{T}^{-1} \mathrm{~S}^{-1}\right)=\mathrm{S}\left(\mathrm{T}\left(\mathrm{T}^{-1} \mathrm{~S}^{-1}\right)=\mathrm{S}\left(\mathrm{TT}^{-1}\right) \mathrm{S}^{-1}=\mathrm{S}\left(\mathrm{IS}^{-1}\right)=\mathrm{SS}^{-1}=\mathrm{I}\right.$
Similarly $\left(T^{-1} S^{-1}\right)(S T)=T^{-1}\left(S^{-1}(S T)\right)=T^{-1}\left(S^{-1} S\right) T=T^{-1} \quad(I T)=T^{-1} \quad T=I$
Showing that $(S T)^{-1}=T^{-1} S^{-1}$.
(ii) Let $v \in \operatorname{Ker} T$ be any element

Then $\quad \mathrm{T}(v)=0$
$\Rightarrow \mathrm{S}(\mathrm{T}(\mathrm{v}))=\mathrm{S}(0)$
$\Rightarrow S T(v)=0$
$\Rightarrow v \in \operatorname{Ker} S T$ and $\operatorname{Ker} S T=(0)$ as $S T$ is $1-1$
$\Rightarrow v=0 \Rightarrow \operatorname{Ker} T=(0) \Rightarrow T$ is $1-1$ onto.
(iii) Let $\mathrm{u} \in \mathrm{U}$ be any element. Since $\mathrm{ST}: \mathrm{V} \rightarrow \mathrm{U}$ is onto, ${ }^{\exists}$ some $v \in \mathrm{~V}$ s.t., $\mathrm{ST}(v)=\mathrm{u}$
i.e. ,

$$
\mathrm{S}(\mathrm{~T}(v))=\mathrm{u}
$$

Let $T(v)=w$ and $w \in W$ such that

$$
S(w)=u
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Then
$S$ is onto.
19. (2) Since $Z_{1}=3-4 i, \quad Z_{2}=-4+3 i$
and if angle between them is $\theta$ given by

$$
\cos \theta=\frac{Z_{1} \cdot Z_{2}}{\left|Z_{1}\right|\left|Z_{2}\right|}
$$

$$
Z_{1} \cdot Z_{2}=\operatorname{Re}\left\{\bar{Z}_{1} Z_{2}\right\}=\operatorname{Re}\{(3+4 i)(-4+3 i)\}=\operatorname{Re}\{-24-7 i\}=-24
$$

$$
\cos \theta=\frac{-24}{|3-4 i||-4+3 i|}=\frac{-24}{25}=-0.96
$$

$$
\theta=\cos ^{-1}(-0.96)
$$

$$
=\pi-\cos ^{-1}(0.96)
$$


20. (4)
here $I=\int_{0}^{A} x d z+\int_{A}^{B} x d z+\int_{B}^{C} x d z+\int_{C}^{0} x d z$
along $O A=x=(1-t) \cdot 0+t .1=t$
along $A B=x=(1-t) \cdot 1+t(1+i)=1+t i$
along $B C=x=(1-t) \cdot(1+i)+t \cdot 1=1-t+i$
along $O C=x=(1-t) \cdot i+t \cdot 0=(1-t) i$
So $I=\int_{0}^{1} t d t+\int_{0}^{1} 1 . t d t+\int_{0}^{1}(1-t)(-1) d t+0$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
=\frac{1}{2}+i-\frac{1}{2}+0=i
$$

21. (4) Statement $A$ and $B$ are true as if

$$
T(z)=\frac{a x+b}{c z+d}
$$

$$
(a, b, c, d \in c a d-b c \neq 0)
$$

be linear transformation.
If $w=\frac{a z+b}{c z+d} \quad\left(z \neq-\frac{d}{c}\right)$
it gives $z=T^{-1}(w) \frac{d w-b}{-c w+a}\left(w \neq \frac{a}{c}\right)$
where $d a-(-b)(-c)=a d-b c \neq 0$
inverse of bilinear transformation is again a bilinear transformation.
again take ${ }^{s(z)=\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}}$ another (where $a^{\prime} d^{\prime}-b^{\prime} c^{\prime} \neq 0$ )
bilinear transformation.
$(T o S)(z)=T(S(z))$

$$
=\frac{a\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)+b}{c\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)+d}=\frac{\left(a a^{\prime}+b c^{\prime}\right) z+a b^{\prime}+b d^{\prime}}{\left(c a^{\prime}+d c^{\prime}\right) z+c b^{\prime}+d d^{\prime}}
$$

it is a bilinear transformation given by $(a d-b c)\left(a^{\prime} d^{\prime}-b^{\prime} c^{\prime}\right) \neq 0$
(3) if a bilinear transformation fixes 1 i.e.
$T(1)=1$
then $\frac{a+b}{c+d}=1$
so that $\mathrm{a}=\mathrm{d}$
b = c
we conclude that T is identity map
(4) A bilinear mapping maps circles and straight lines in the z-plane into circles or lines.
22.(C) Since $f(-1)=f(1)=2^{35}$
i.e. two real no. -1 and 1 have the same image so, the function is not one-one and let
$y=\left(x^{2}+1\right)^{35}$
$x=\sqrt{y^{1 / 35}-1}$
Thus every real no. has no pre-image. So, the function is not on to.
Hence function is neither one-one nor onto.
23.(1) Let given equation is as

$$
\begin{aligned}
& f=q-3 p^{2} \text { find } \frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=0, \frac{\partial f}{\partial z}=0 \\
& \frac{\partial f}{\partial p}=-6 p, \frac{\partial f}{\partial q}=1
\end{aligned}
$$

put these value in Charpit subsidiary equation

$$
\begin{aligned}
& \quad \frac{d p}{\frac{\partial f}{\partial x}+p \frac{\partial f}{\partial z}}=\frac{d q}{\frac{\partial f}{\partial y}+q \frac{\partial f}{\partial z}}=\frac{d z}{p \frac{\partial f}{\partial p}-q \frac{\partial f}{\partial p}-q \frac{\partial f}{\partial p}}=\frac{d y}{-\frac{\partial f}{\partial q}} \\
& \Rightarrow \frac{d p}{0}=\frac{d q}{0}=\ldots \\
& \Rightarrow d p=0 d q=0 \text { integrate get } p=a \text { constant, } q=b \text { constant then put } p \text { and } q \text { in } s z=p p d x \\
& \\
& +q d y \\
& \Rightarrow d z=a d x+b \text { dy integrate we get } \\
& \Rightarrow z=a x+b y+c \text { but } q=3 p^{2} \text { and } p=a \Rightarrow q=3 a^{2} \\
& \text { or } z=a x+3 a^{2}+c
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
24.(2) Let

$$
u_{n}=\frac{1}{n^{P}+n^{-P}}<\frac{1}{n^{|P|}}
$$

$$
\begin{aligned}
& \text { If }|P|>1, \text { then } \frac{1}{n^{|P|}} \text { is Convergent, there } \\
& \text { convergent if }|P|>1 \text { and divergent if. }|P| \leq 1
\end{aligned}
$$

25. (1) Let $2^{n}-1=p=$ prime

Let n be not a prime number
Then n is composite s.t. $\mathrm{n}=\mathrm{r} \mathrm{s} 1<\mathrm{r}, \mathrm{s}<\mathrm{n}$

$$
\begin{aligned}
p & =2^{n}-1 \\
& =2^{r s}-1=\left(2^{r}\right)^{s}-1 \\
& =x^{s}-1 \quad=x=2^{r}>1 \text { as } r>1 \\
& =(x-1)\left(x^{s-1}+x^{s-2}+\ldots \ldots . x+1\right)
\end{aligned}
$$

Either $\mathrm{x}-1=1$ or $\mathrm{x}^{\mathrm{s}-1}+\mathrm{x}^{\mathrm{s}-1}+\mathrm{x}^{\mathrm{s}-2}+\ldots \ldots . . \mathrm{x}+1=1$
$x-1=1 \Rightarrow x=2$ which is prime
and $x^{s-1}+\ldots .+x+1=1$
$x^{s-1}+\ldots \ldots . x=0$ which is natural
$\Rightarrow \mathrm{n}$ is prime by contradiction
$\Rightarrow$ the only odd prime is $\mathrm{n}=2$
and for $\mathrm{n}=2 \quad 2^{\mathrm{n}}-1=$ again a prime
26.(4) Ring of order 1 being the zero ring is commutative and ring of order 2 and 3 are of prime order so can prove here that rings of prime order is commutative

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Let the order of ring be p (prime number)
Then $<R,+>$ is cyclic group Let $<R,+>=<a>$ then $o(1)=o(R)=p$
Let $x, y \in R$ be any elements then $x=n a y=m a f o r$ some integer $n, m$
Now $x y=(n a)(m a)=n m a^{2}=(m a)(n a)=y^{x}$
$\Rightarrow R$ is commutative.
Now we can take an example of ring of order 4
Let $R$ be the set of $2 \times 2$ matrices
$\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right\}$ over $Z_{2}$ with second row having zero entries Then $R$ is a ring under matrix addition and matrix multiplication
since

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad \text { and }\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

we find $R$ is non commutative and also it has order 4
27. (1) Here we have

$$
\begin{array}{ll}
x_{0}=0, x_{1}=4, \\
y_{0}=f\left(x_{0}\right)=0, \\
y_{0}^{1}=f^{\prime}\left(x_{0}\right)=1, & y_{1}=f\left(x_{1}\right)=2 \\
y_{1}^{1}=f^{\prime}(x)=0
\end{array}
$$

The Hermite's interpolating polynomial is given by

$$
\begin{equation*}
\phi(x)=\sum_{i=0}^{x} u_{i}(x) y_{i}+\sum_{i=0}^{1} v_{i}(x) y_{i}^{1} \tag{1}
\end{equation*}
$$

where

$$
\mathrm{u}_{\mathrm{i}}(\mathrm{x})=\left[1-2\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}}\right) \ell_{\mathrm{i}}^{1}\left(\mathrm{x}_{\mathrm{i}}\right)\right] \ell_{\mathrm{i}}^{2}(\mathrm{x})
$$

and

$$
\mathrm{v}_{\mathrm{i}}(\mathrm{x})=\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}}\right) \ell_{\mathrm{i}}^{2}(\mathrm{x})
$$

we have

$$
\mathrm{u}_{0}(\mathrm{x})=\left[1-2\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\ell_{0}^{1}}\left(\mathrm{x}_{0}\right)\right]^{\ell_{0}^{2}(\mathrm{x})}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{gathered}
=\left[1-2(x-0) \ell_{0}^{1}(0)\right] \ell_{0}^{2}(x) \\
\ell_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}=\frac{x-4}{0-4}=\frac{x-4}{-4}
\end{gathered}
$$

and

$$
\ell_{0}^{1}(x)=-\frac{1}{4}
$$

We obtain

$$
u_{0}(x)=\left[1-2 x\left(-\frac{1}{4}\right)\right]\left(\frac{x-4}{16}\right)=\left(1+\frac{x}{2}\right) \frac{(x-4)^{2}}{16}
$$

$$
=\frac{1}{32}(x+2)(x-4)^{2}
$$

Also we have

$$
\begin{aligned}
& u_{1}(x)=\left[1-2\left(x-x_{1}\right) \ell_{1}^{1}(x)\right] \ell_{1}^{2}(x)=\left[1-2(x-4) \ell_{1}^{1}(x)\right] \ell_{1}^{2}(x) \\
& \ell_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}=\frac{x-0}{4-0}=\frac{x}{4}
\end{aligned}
$$

Since

$$
\ell_{1}^{1}(x)=\frac{1}{4}
$$

and

We can write

$$
u_{1}(x)=\left[1-2(x-4) \frac{1}{4}\right]\left(\frac{x^{2}}{16}\right)=\left(\frac{6-x}{2}\right) \frac{x^{2}}{16}=\frac{x^{2}(6-x)}{32}
$$

Similarly, we have $\mathrm{v}_{0}(\mathrm{x})=\left(\mathrm{x}-\mathrm{x}_{0}\right) \ell_{0}^{2}(\mathrm{x})$

$$
=(x-0)=\frac{(x-4)^{2}}{16}=\frac{x(x-4)^{2}}{16}
$$

and $\quad v_{1}(x)=\left(x-x_{1}\right)^{\ell_{1}^{2}(x)=(x-4) \frac{x^{2}}{16}}$
The Hermite's polynomial is

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
\phi(x) & =u_{0} y_{0}+u_{1} y_{1}+v y_{0}^{1}+v_{1} y_{1}^{1} \\
& =u_{0} \cdot 0+2 u_{1}+1 \cdot v_{0}+0 \cdot v_{1} \\
& =2 u_{1}+v_{1} \\
& =2\left[\frac{x^{2}(6-x)}{32}\right]+\frac{x(x-4)^{2}}{16} \\
& =\frac{1}{16}\left[6 x^{2}-x^{3}+x^{3}+16 x-8 x^{2}\right] \\
& =\frac{1}{16}\left(16 x-2 x^{2}\right)=\frac{1}{8}\left(8 x-x^{2}\right)
\end{aligned}
$$

Hence the required Hermite's polynomial is

$$
\frac{1}{8}\left(8 x-x^{2}\right)
$$

28. (1) Given functional $I=\int_{0}^{\frac{\pi}{2}}\left(y^{\prime 2}-y^{2}-4 y \sin ^{2} x\right) d x$

$$
f\left(x, y, y^{\prime}\right)=y^{\prime 2}-y^{2}-4 y \sin ^{2} x
$$

for extremal

$$
\begin{aligned}
& \frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \\
& -2 y-4 \sin ^{2} x-\frac{d}{d x}\left(2 y^{\prime}\right)=0 \\
& -y-2 \sin 2 x-y^{\prime \prime}=0 \\
& y^{\prime \prime}+y=-2 \sin ^{2} x \\
& C F=C_{1} \cos x+C_{2} \sin x \\
& \text { P.I. }=\frac{1}{D^{2}+1} 2 \sin ^{2} x
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& =\frac{1}{\mathrm{D}^{2}+1}[1-\cos 2 x] \\
& =-\left(1+\frac{1}{3} \cos 2 x\right)
\end{aligned}
$$

so $y=c_{1} \cos x+c_{2} \sin x-11^{-\frac{1}{3} \cos 2 x}$

$$
\begin{aligned}
& y(0)=\frac{1}{3} \Rightarrow c_{1}-1-\frac{1}{3} \Rightarrow c_{1}=-\frac{4}{3} \\
& y\left(\frac{\pi}{2}\right)=\frac{1}{3} \Rightarrow c_{2}-1+\frac{1}{3} \Rightarrow c_{2}=-\frac{2}{3} \\
& \Rightarrow y=-\frac{4}{3} \cos x-\frac{2}{3} \sin x+1+\frac{1}{3} \cos 2 x \\
& y=(2 \sin x+\cos 2 x) / 3
\end{aligned}
$$

29. (4) Let $c$ be an Eigen value of $T$.
$\therefore \quad \exists 0 \neq \mathrm{f} \in \mathrm{V}$ s.t.
$\mathrm{Tf}=\mathrm{cf}$
$\therefore \quad \mathrm{Tf}(\mathrm{x})=\mathrm{cf}(\mathrm{x})$
$\therefore \quad \int_{0}^{x} f(t) d t=c f(x)$
$f(x)=c f^{\prime}(x)$
$y=c^{\frac{d y}{d x}}$
$c \neq 0($ as $c=0 \Rightarrow y=0 \Rightarrow f(x)=0 \Rightarrow f=(0)$
$\therefore \quad \frac{d y}{y}=\frac{d x}{c}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
\Rightarrow & \log y=\frac{x^{x}}{c}+\log a \Rightarrow y=a e^{x / c} \\
\Rightarrow & y(0)=a \\
\Rightarrow & f(x)=y=f(0) e^{x / c} \\
\Rightarrow & \int_{0}^{x} f(0) e^{t / c} d t=\int_{0}^{x} f(t) d t=c f(x)=c f(0) e^{x / c} \\
& f(0) \neq 0(a s f(0)=0 \Rightarrow a=0 \Rightarrow y=0 \Rightarrow f(x)=0 \Rightarrow f=0)
\end{aligned}
$$

$\therefore f(0)\left[\mathrm{ce}^{\mathrm{t} / \mathrm{c}}\right]_{0}^{\mathrm{x}}=\operatorname{cf}(0) \mathrm{e}^{\mathrm{x} / \mathrm{c}}$
$\therefore c\left(e^{x / c}-1\right)=c e^{x / c}$
$\Rightarrow e^{x / c}-1=e^{x / c}$
$\Rightarrow 1=0$, a contradiction
$\therefore \quad \mathrm{T}$ has no eigen value.
30.(3) The function

$$
\cosh \left(z+\frac{1}{z}\right)
$$

$\therefore \quad$ This function is analytic in the annulus $r \leq|z| \leq R, r<R$. The laurent series expansion of this

$$
\text { function in the annulus } r \leq|z| \leq R \text { is, }
$$

$$
\cosh \left(z+\frac{1}{z}\right)=\sum_{-\infty}^{\infty} a_{n} z^{n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{r} \cosh \left(z+\frac{1}{z}\right) \frac{d z}{z^{n+1}}
$$

where $r$ is a circle,$|z|=r_{1} \quad\left(r<r_{1}<R\right)$
Let $r_{1}=1$, then $|z|=1$ and $z=e^{i \theta}$

$$
\Rightarrow \mathrm{dz}=\mathrm{i} \mathrm{e}^{\mathrm{i} \theta} \mathrm{~d} \theta
$$

$a_{n}=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \cosh \left(e^{i \theta}+\frac{1}{e^{i \theta}}\right) \frac{i e^{i \theta} d \theta}{e^{i \theta(n+1)}}$
$=\frac{i}{2 \pi i} \int_{0}^{2 \pi} \cosh (2 \cos \theta) e^{-i n \theta} d \theta$
$=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \theta)(\cos n \theta-i \sin n \theta) d \theta$
$=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \theta) \cos n \theta d \theta-\frac{\mathrm{i}}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \theta) \sin n \theta \mathrm{~d} \theta$
$=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \theta) \cos n \theta d \theta$

$$
\left(\begin{array}{c}
\therefore \int_{0}^{2 \pi} f(\theta)=0 \\
\text { if }(2 \pi-\theta)=-f(\theta)
\end{array}\right.
$$

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \theta) \cos (-n \theta) d \theta=a_{-n}
$$

Also, $\cosh \left(z+\frac{1}{z}\right)$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& =\sum_{-\infty}^{\infty} a_{n} z^{n}=a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}+\sum_{n=1}^{\infty} a_{n} z^{n} \\
& =a_{0}+\sum_{n=1}^{\infty} a_{n}\left(z^{n}+\frac{1}{z^{n}}\right) \\
& \quad \cosh \left(z+\frac{1}{z}\right)=a_{0}+\sum_{n=1}^{\infty}\left(z^{n}+\frac{1}{z^{n}}\right) a_{n}
\end{aligned}
$$

Thus
Where $a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \theta) \cos n \theta d \theta$
31.(3) Let $n$ be the number of students and $p$ the probability for any student to need copy of a particular test book from the university library.

Mean :

$$
\begin{aligned}
& \bar{X}=n p=600 \times .5=30 \\
& \sigma=\sqrt{n p q}=\sqrt{600 \times .05 \times .95}=5.34
\end{aligned}
$$

Let $x_{1}$ represent the number of copies of a textbook required on any day. We want $x_{1}$ such that

$$
P\left(X<z_{1}\right)>0.9 \text { or } P\left(Z\left(z_{1}\right)>0.90\right.
$$

$$
\left(z_{1}=\frac{x_{1}-30}{5.34}\right)
$$

or $\mathrm{P}\left(0<\mathrm{Z}\left(\mathrm{z}_{1}\right)>0.4\right.$
or $\quad z_{1}>1.28 \quad$ [From normal tables]
$\therefore \frac{\mathrm{x}_{1}-\mu}{\sigma}>1.28$ or $\frac{\mathrm{x}_{1}-30}{5.3}>1.28$

$$
\begin{aligned}
& x_{1}-30>6.784 \\
& x_{1}>36.784=37
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Hence the library should keep at least 37 copies of the book to ensure that the probability is more than $90 \%$ that none of the students reading a copy from the library has to come back disappointed.
32.(3) We have $a_{0}=1$

$$
\begin{aligned}
& a_{1}=a_{0} 4^{-1}=\frac{1}{4} \\
& a_{2}=a_{1} 4^{-2^{3}}=\frac{1}{4} \cdot 4^{-2^{3}}=\frac{1}{4^{1+2^{3}}} \\
& a_{3}=a_{2} 4^{-2^{3}}=\frac{1}{4^{1+2^{3}+3^{3}}} \\
& \vdots \\
& a_{n}=\frac{1}{4^{1+2^{3}+3^{3}+\ldots+n^{3}}}=\frac{1}{4^{n^{2}(n+1)^{2} / 4}}
\end{aligned}
$$

So, the radius of convergence of power series


$$
=\lim _{n \rightarrow \infty} 4^{\left(1+\frac{1}{n}\right)^{2 / 4}}=4^{1 / 4}=2^{1 / 2}=\sqrt{2}
$$

33.(4) We have

$$
g^{\prime}(x)=2 f^{\prime}\left(\frac{x}{2}\right) \cdot \frac{1}{2}+f^{\prime}(2-x)(-1)
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
=f^{\prime}\left(\frac{x}{2}\right)-f^{\prime}(2-x)
$$

Given $f$ " $(x)<0 \forall x \in(0,2)$
So $f^{\prime}(x)$ is decreases in $(0,2)$
Let $\frac{x}{2}>2-x \Rightarrow f^{\prime}\left(\frac{x}{2}\right)<f^{\prime}(2-x)$
Thus $f^{\prime}\left(\frac{x}{2}\right)-f^{\prime}(2-x)<0$
$\Rightarrow g^{\prime}(x)<0, \quad \forall \frac{x}{2}>2-x$

$$
\Rightarrow x>\frac{4}{3}
$$

$g$ decreasing in $\left(\frac{4}{3}, 2\right)$ and increasing in $\left(0, \frac{4}{3}\right)$
34. (3) Divergence Criteria If a sequence $X=\left(x_{n}\right)$ of real numbers has either of the following properties, then X is divergent.
(i) X has two convergent subsequence $\mathrm{X}^{\prime}=\left({ }_{\mathrm{X}_{\mathrm{k}}}\right)$ and $\mathrm{X}^{\prime \prime}=\left({ }^{\mathrm{X}_{\mathrm{r}_{\mathrm{k}}}}\right)$ whose limits are not equal.
(ii) X is unbounded.
35. (3) If $f$ is differentiable on $I$, the well know the implies that $f$ continuous on $I$, and by the

Continuous Inverse Theorem the inverse function g is continuous on J .

$$
\text { i.g. } g^{\prime}=\frac{1}{f^{\prime} o g}
$$

36. (1) The given equation may be written as
$g(x)=2 \lambda x \int_{0}^{1} \operatorname{tg}(t) d t-4 \lambda x^{2} \int_{0}^{1} g(t) d t$
or $g(x)=2 \lambda x c_{1}-4 \lambda x^{2} c_{2}$
where $\quad c_{1}=\int_{0}^{1} \operatorname{tg}(t) d t$
and $\quad c_{2}=\int_{0}^{1} g(t) d t$
Using (2), (3) becomes

$$
\begin{gathered}
c_{1}=\int_{0}^{t} t\left(2 \lambda c_{1} t-4 \lambda c_{2} t^{2}\right) d t \\
c_{1=}\left[1-2 \lambda \int_{0}^{1} t^{2} d t\right]+4 \lambda c_{2} \int_{0}^{1} t^{3} d t=0
\end{gathered}
$$

$$
\begin{align*}
& \text { or, } \quad c_{1}\left(1-\frac{2 \lambda}{3}\right)+\lambda c_{2}=0  \tag{5}\\
& \text { Again using (2), (4) becomes } \\
& \qquad c_{2}=\int_{0}^{1}\left(2 \lambda_{1} c t-4 \lambda c_{2} t^{2}\right) d t
\end{align*}
$$

or, $2 \lambda c_{1} \int_{0}^{1} d t-c_{2}\left[1+4 \lambda \int_{0}^{1} t^{2} d t\right]=0$

$$
\begin{equation*}
\left(1+\frac{4 \lambda}{3}\right)=0 \tag{6}
\end{equation*}
$$

For non zero solution of equations (5) and (6), we must have

$$
\left|\begin{array}{cc}
1-\frac{2 \lambda}{3} & \lambda \\
+\lambda & -\left[1+\frac{4 \lambda}{3}\right]
\end{array}\right|=0
$$

WhatsApp: 9001894070

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
or, $\quad-\left(1-\frac{2 \lambda}{3}\right)\left(1+\frac{4 \lambda}{3}\right)-\lambda^{2}=0$
or, $\quad-1-\frac{2 \lambda}{3}+\frac{8 \lambda^{2}}{9}-\lambda^{2}=0$
or, $\lambda^{2}+6 \lambda+9=0$
37. (3) Here

$$
\begin{equation*}
f(x) \quad=x, \lambda=1, k(x, t)=1 \tag{2}
\end{equation*}
$$

We know that $k_{1}(x, t)=k(x, t)=1$
(1)

The $\mathrm{n}^{\text {th }}$ iterated kernal is given by

$$
\begin{equation*}
k_{n}(x, t) \quad=\quad \int_{0}^{1 / 2} k(x, z) k_{n-1}(z, t) d z \tag{3}
\end{equation*}
$$

On putting $\mathrm{n}=2 \sin (3)$, we have

$$
\begin{aligned}
& \mathrm{k}_{2}(\mathrm{x}, \mathrm{t}) \quad=\int_{0}^{1 / 2 \mathrm{k}(\mathrm{x}, \mathrm{z}) \mathrm{k}_{1}(\mathrm{z}, \mathrm{t}) \mathrm{dz}} \\
&=\quad \int_{0}^{1 / 2} 1 \mathrm{dz} \\
&=\quad[\mathrm{z}]_{0}^{1 / 2}= \\
&=\frac{1}{2}
\end{aligned}
$$

[using (2)]

Again putting $n=3$ in (3), we have

$$
\mathrm{k}_{3}(\mathrm{x}, \mathrm{t})=\int_{0}^{1 / 2} \mathrm{k}(\mathrm{x}, \mathrm{z}) \mathrm{k}_{2}(\mathrm{z}, \mathrm{t}) \mathrm{dz}
$$

$$
=\quad \int_{0}^{1 / 2} \frac{1}{2} \mathrm{dz}
$$

$$
\begin{equation*}
\mathrm{k}_{3}(\mathrm{x}, \mathrm{t})=\left(\frac{1}{2}\right)^{2} \tag{5}
\end{equation*}
$$

and so on repeating the above process, we have in general

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{equation*}
k_{n}(x, t) \quad=\left(\frac{1}{2}\right)^{n-1} \tag{6}
\end{equation*}
$$

The resolvent kernal $R(x, t ; \lambda)$ is given by

$$
\begin{aligned}
R(x, t ; \lambda)=\sum_{n=1}^{\infty} \lambda^{n-1} & k_{n}(x, t) \\
& =\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

$$
=1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}
$$

$$
\mathrm{R}(\mathrm{x}, \mathrm{t} ; \lambda) \quad=\frac{1}{1-1 / 2}=2
$$

38. (1) We have

$x_{G}=13 a \sin \phi+4 a \sin \theta$
and $y_{G}=13 a \cos \phi+4 a \cos \theta$
$\dot{x}_{G}^{2}+\dot{y}_{G}^{2}=169 \dot{a}^{2} \dot{\phi}^{2}+16 a^{2} \dot{\theta}^{2}$
$+104 a^{2} \cos (\theta-\phi)$
Thus, $T={ }^{\frac{1}{2} m\left[k^{2} \dot{\theta}^{2}+\left(\dot{\mathrm{x}}_{\mathrm{G}}^{2}+\dot{y}_{\mathrm{G}}^{2}\right)\right]=\frac{1}{2} m \mathrm{~m}^{2}\left[\frac{64}{3} \dot{\theta}^{2}+169 \dot{\phi}^{2}+104 \dot{\theta} \dot{\phi}\right]}$ and the work function

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
W=m g(13 a \cos \phi+4 a \cos \theta)
$$

$\therefore$ Lagrange's $\theta$-equation gives

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~T}}{\partial \dot{\theta}}\right)-\frac{\partial \mathrm{T}}{\partial \theta} \Rightarrow 61 \ddot{\theta}+39 \ddot{\phi}=-\frac{3 \mathrm{~g}}{\mathrm{a}} \theta
$$

39.(2) We have $\varepsilon_{n+1}=\varepsilon_{n}-\frac{2 f\left(a+\varepsilon_{n}\right)}{f^{\prime}\left(a+\varepsilon_{n}\right)}$
where $a, \varepsilon_{n}, \varepsilon_{n+1}$ have their usual meanings, Expanding in powers of $\varepsilon_{n}$ and using $f(1)=0, f^{\prime}(1)=0$, since $x=a$ is a double root $x=x_{n}$, we get

$$
\begin{aligned}
& \varepsilon_{n+1}=\varepsilon_{n}-\frac{2\left[\frac{\varepsilon_{n}^{2}}{2!} \mathrm{f} "(\mathrm{a})+\ldots\right]}{\left[\varepsilon_{\mathrm{n}} \mathrm{f}^{\mathrm{n}}(\mathrm{a})+\frac{\varepsilon_{n}^{2}}{2!} \mathrm{f} "(\mathrm{a})+\ldots\right]} \\
& \text { 2. } \varepsilon_{n}^{2} \frac{1}{2!}\left[f "(a)+\frac{1}{3!} \varepsilon_{n} f^{\prime \prime \prime}(a)+\ldots\right] \\
& \varepsilon_{n}\left[f "(a)+\frac{\varepsilon_{n}}{2!} f "(a)\right. \\
& =\varepsilon_{n}- \\
& \frac{2 \varepsilon_{n}\left[\frac{1}{2!} f "(a)+\frac{1}{3!} \varepsilon_{n} f^{\prime \prime \prime}(a)\right]}{\left[f "(a)+\frac{\varepsilon_{n}}{2!} f^{\prime \prime \prime}(a)\right]} \\
& =\varepsilon_{\mathrm{n}} \\
& -\frac{2 \varepsilon_{n}\left[\frac{1}{2!} f "(a)+\frac{1}{3!} \varepsilon_{n} f " '(a)\right]}{\left[f "(a)+\frac{\varepsilon_{n}}{2!} f{ }^{\prime \prime \prime}(a)\right]} \\
& \square \frac{1}{6} \varepsilon_{n}^{2} \cdot \frac{f " '(a)}{\left[f "(a)+\frac{\varepsilon_{n} f "(a)}{2!}\right]}
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\varepsilon_{n+1} \approx \frac{\frac{1}{6} \varepsilon_{n}^{2} \cdot \frac{f "(a)}{[f "(a)]}}{\left[\frac{1}{}\right.}
$$

which shows that $\varepsilon_{\mathrm{n}}+1 \propto \varepsilon_{\mathrm{n}}{ }^{2}$ and hence the convergence is quadratic.
40. (2) Now $T\left(\in_{1}\right)=T(1,0)$

$$
\begin{aligned}
& =(1,0) \\
& =a(1, i)+b(-i, 2)
\end{aligned}
$$

$\Rightarrow \mathrm{a}-\mathrm{bi}=1$ where $\mathrm{a}, \mathrm{b} \in \mathrm{C}$
$a i+2 b=0$
$\Rightarrow a=2, b=-i$
$\Rightarrow \mathrm{T}\left(\in_{1}\right)=2 \alpha_{1}-\mathrm{i} \alpha_{2}$
Also $T\left(\in_{2}\right)=T(0,1)=(0,0)=0 \alpha_{1}+0 \alpha_{2}$
$\therefore \quad[\mathrm{T}]_{\beta \beta},=\left[\begin{array}{cc}2 & 0 \\ -\mathrm{i} & 0\end{array}\right]$

## PART C(41-60)

41. $(1,2,3)$ Let $R_{\infty}$ be the extended set of real numbers (i.e., the set of real numbers including $-\infty$ and $+\infty$ ).
he functions $d$ defined by
$d(x, y)=|f(x)-f(y)|, \quad \forall x, y \in \mathbf{R}_{\infty}$
where $f(x)$ is given by

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$f(x)=\left\{\begin{array}{clr}\frac{x}{1+|x|}, & \text { when }-\infty<x<\infty \\ 1, & \text { when } r=\infty \\ -1, & \text { when } x=-\infty\end{array}\right.$
Show that $\left(\mathbf{R}_{\infty}, \mathrm{d}\right)$ is a bounded metric space.
For the triangle inequality

$$
\begin{aligned}
& d(x, y)=\left|\frac{x}{1+|x|}-\frac{x}{1+|y|}\right| \\
&=\left|\frac{x}{1+|x|}-\frac{z}{1+|z|}+\frac{z}{1+|z|}-\frac{y}{1+|y|}\right| \\
& \leq\left|\frac{x}{1+|x|}-\frac{z}{1+|z|}\right|+\left|\frac{z}{1+|z|}-\frac{y}{1+|y|}\right| \\
&=d(x, z)+d(z, y), x, y, z \in \mathbf{R}
\end{aligned}
$$

If $x=\infty, y=-\infty$, then
$d(x, y)=|1-(-1)| \leq\left|1-\frac{z}{1+|z|}\right|+\left|\frac{z}{1+|z|}-(-1)\right|$
Similarly, when $x=-\infty, y+\infty$, then triangle inequality holds.
Hence ( $\left.\mathbf{R}_{\infty}, d\right)$ is metric space.
Moreover, if x and y are two elements of $\mathbf{R}_{\infty}$, then

$$
\begin{aligned}
& -1 \leq f(x) \leq 1, \quad \text { and }-1 \leq f(y) \leq 1, \\
& d(x, y)=|f(x)-f(y)| x, y \in R_{\infty}
\end{aligned}
$$

Hence ( $R_{\infty} d$ ) is a bounded metric space.
42.(1,2,3,4) Let $T(z)=\frac{a z+b}{c z+d}, a d-b c \neq c$, be any bilinear transformation.

If $\mathrm{c}=0$, then $\mathrm{T}(\mathrm{z})=\frac{\mathrm{a}}{\mathrm{d}} \mathrm{z}+\frac{\mathrm{b}}{\mathrm{d}}=\mathrm{A} z+B$
When $\mathrm{A}=\frac{\mathrm{a}}{\mathrm{d}}, \mathrm{B}=\frac{\mathrm{b}}{\mathrm{d}}$
Clearly $A z+B$, being linear, maps circles and lines into circles and lines (a line is a circle with infinite radius)

If $C \neq 0$, then

$$
\begin{aligned}
& T(z)=\frac{a(z+d / c)}{c(z+d / c)}+\frac{b}{c z+d}-\frac{a d}{c(c z+d)} \\
& =\frac{a}{c}+\frac{b c-a d}{c(c z+d)} \\
& \quad=\frac{a}{c}+\frac{b c-a d}{c^{2}} \cdot \frac{1}{z+d / c}
\end{aligned}
$$

$$
z_{1}=z+\frac{d}{c}, z_{2}=\frac{1}{z_{1}}
$$

$$
z_{3}=\frac{b c-a d}{c^{2}} \cdot z_{2}
$$

We get

$$
T(z)=\frac{a}{c}+z_{3}
$$

Which is of the form

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$\omega_{1}=z+\alpha, \omega_{2}=\frac{1}{z}, \omega_{3}=\beta z$
Which shows that every bilinear transformation is the resultant of bilinear transformation with simple geometric imports. Thus, a bilinear transformation maps circle and lines into circle and lines.
43. $(1,2,3)$ We have

$$
\begin{gathered}
\Delta^{2}\left(\frac{5 x+12}{x^{2}+5 x+6}\right\}=\Delta^{2}\left(\frac{5 x+12}{(x+2)(x+3)}\right) \\
=\Delta^{2}\left(\frac{2}{x+2}+\frac{3}{x+3}\right)
\end{gathered}
$$

$$
=\Delta\left(\Delta\left(\frac{2}{x+2}\right)+\Delta\left(\frac{3}{x+3}\right)\right)
$$

$$
=\Delta\left[2 \Delta\left(\frac{1}{x+2}\right)+3 \Delta\left(\frac{1}{x+3}\right)\right]
$$

$$
=\Delta\left[2\left(\frac{1}{x+3}-\frac{1}{x+2}\right)+3\left(\frac{1}{x+4}-\frac{1}{x+3}\right)\right]
$$

$$
=2 \Delta\left[\left(\frac{1}{x+3}-\frac{1}{(x+2)}\right)+3 \Delta\left(\frac{1}{x+4}-\frac{1}{x+3}\right)\right]
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& =-2 \Delta\left(\frac{1}{(x+3)(x+2)}\right)-3 \Delta\left(\frac{1}{(x+4)(x+3)}\right) \\
& =-2\left[\frac{1}{(x+4)(x+3)}-\frac{1}{(x+3)(x+2)}\right] \\
& \\
& =-2\left[\frac{1}{(x+5)(x+4)}-\frac{1}{(x+4)(x+3)}\right] \\
& =-2 \frac{(x+2)(x+3)(x+4)}{(x+2)(x+3)(x+4)}-3 \frac{(x+3-x-5)}{(x+3)(x+4)(x+5)} \\
& \left.=\frac{4(x+5)+6(x+2)}{(x+2)(x+3)(x+4)(x+5)}\right) \\
& =
\end{aligned}
$$

44. $(1,3,4)$ Given $\left|a_{1}\right|<\left|a_{2}\right|$ and $\frac{a_{2}}{a_{1}}$ so let $a_{1}=1, a_{2}=-2$

Now $\left|a_{2}\right|<\left|a_{3}\right|$ and $\frac{a_{3}}{a_{2}}$ so let $a_{3}=4=2^{2}$
$\left|a_{3}\right|<\left|a_{4}\right|$ and $\frac{\frac{a_{4}}{a_{3}}}{}$ so let $a_{4}=-8=-2^{3}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$\left|a_{4}\right|<\left|a_{5}\right|$ and $\frac{a_{5}}{a_{4}}$ so let $a_{5}=16=2^{4}$
So $a_{n}=(-1)^{n-1} 2^{n-1}$
$\sum \frac{1}{a_{n}}=\sum \frac{(-1)^{n-1}}{2^{n-1}}$
be a convergent series and converge absolutely
$\Rightarrow$ Option (a) is incorrect and also (d) is incorrect
Here $\sum a_{n}=\sum 2^{n-1}$ be a geometric series with common ratio $2>1$, So it is divergent.
Thus option (c) cannot be true
we have $\left|\mathrm{a}_{\mathrm{n}}\right|<\left|\mathrm{a}_{\mathrm{n}+1}\right|, \forall \mathrm{n} \in \square$
$\left|\frac{a_{n+1}}{a_{n}}\right|>1 \forall n \in \square$
$\Rightarrow\left|\frac{\frac{1}{a_{n}}}{\frac{1}{a_{n+1}}}\right|>1 \forall n \in \square$
$\Rightarrow \lim _{n \rightarrow \infty}\left|\frac{\frac{1}{a_{n}}}{\frac{1}{a_{n+1}}}\right|>1 \Rightarrow \sum \frac{1}{a_{n}} \quad$ converge absolutely.
45. $(1,3) \mathrm{T}: V \rightarrow \mathrm{~V}$

$$
\mathrm{T}^{2}: \mathrm{V} \rightarrow \mathrm{~V}
$$

$\operatorname{Rank} \mathrm{T}^{2}=\operatorname{dim} \mathrm{V}-\operatorname{dim} \operatorname{Ket} \mathrm{T}^{2}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$\Rightarrow \operatorname{dim} \operatorname{Ker} \mathrm{T}=\operatorname{dim} \operatorname{Ker} \mathrm{T}^{2}$
$\Rightarrow$ nullity $\mathrm{T}=$ nullity $\mathrm{T}^{2}$
If we claim Ker $T=\operatorname{Ker} \mathrm{T}^{2}$
$\mathrm{x} \in \operatorname{Ker} \mathrm{T} \Rightarrow \mathrm{T}(1)=0$

$$
\begin{aligned}
& T^{2}(x)=0 \\
& T(0)=0
\end{aligned}
$$

$\Rightarrow \mathrm{x} \in \operatorname{Ket~}^{2} \Rightarrow \operatorname{Ker} \mathrm{~T} \subseteq \operatorname{Ket} \mathrm{~T}^{2}$
$\Rightarrow \operatorname{Ket} \mathrm{T}=\operatorname{Ket} \mathrm{T}^{2}$ (as they have same dimension)
now $\mathrm{x} \in$ Range ${ }^{\mathrm{T}} \cap \mathrm{Ker} \mathrm{T}$
$\Rightarrow X \in \operatorname{Range} T$ and $x \in \operatorname{Ket} T$
$\Rightarrow \mathrm{T}(\mathrm{x})=0, \mathrm{x}=\mathrm{T}(\mathrm{y})$ for some $\mathrm{y} \in \mathrm{V}$
$T(Y)=0$
$\mathrm{T}^{2}(\mathrm{y})=0$
$y \in \operatorname{Ket} T^{2}=\operatorname{Ket} T$
$\Rightarrow \mathrm{T}(\mathrm{y})=0$

$$
x=0
$$

Ket $T \geqslant$ Range $T=\{0\}$
46. $(1,4)$ Let $X=\left(x_{1}, x_{2}\right), Y=\left(y_{1}, y_{2}\right), \quad \alpha, \beta \in \square$
(a)

$$
\begin{aligned}
& \mathrm{T}(\alpha \mathrm{X}+\beta \mathrm{Y})=\mathrm{T}\left(\alpha \mathrm{x}_{1}+\beta \mathrm{y}_{1}, \alpha \mathrm{x}_{2}+\beta \mathrm{y}_{2}\right) \\
& \quad=\mathrm{T}\left(\alpha \mathrm{x}_{2}+\beta \mathrm{y}_{2}, \alpha \mathrm{x}_{1}+\beta \mathrm{y}_{1}\right)=\alpha\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)+\beta\left(\mathrm{y}_{2}, \mathrm{y}_{1}\right)=\alpha \mathrm{T}(\mathrm{X})+\beta \mathrm{T}(\mathrm{Y})
\end{aligned}
$$

$\Rightarrow T \quad$ is linear.
(b) $T(X+Y)=T\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
=\left(\operatorname{Sin}\left(x_{1}+y_{1}\right), x_{2}+y_{2}\right) T(X)+T(Y)
$$

$\Rightarrow T \quad$ is not linear
(c) $T(X+Y)$
$=T\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
$=\left(\left(x_{1}+y_{1}\right)^{2}, x_{2}+y_{2}\right) T(X)+T(Y)$
$\Rightarrow \top \quad$ not linear
(d) $T\left(x_{1}, y_{2}\right)$
$=\left(x_{1}-x_{2}, 0\right)$ is linear.
47. $(1,2,4)$ Here $u_{1}(x)=x$,

$$
\begin{aligned}
& u_{2}(x)=x^{1 / 3}-x, \\
& u_{3}(x)=x^{1 / 5}-x^{1 / 3}, \\
& u_{n}(x)=x^{1 / 2(2 n-1)}-x^{1 /(2 n-3)}
\end{aligned}
$$

Hence

$$
f_{n}(x)=x^{1 /(2 n-1)} .
$$

$$
\therefore \quad f(0)=0
$$

and

$$
f(0)=1 \text { for all other values of } x \text {. }
$$

Hence $f$ is discontinuous at $x=0$ and consequently zero is a point of non-uniform convergence of the series.

Now for $0 \leq x \leq c<\infty$, we have

$$
\begin{aligned}
& \quad \int_{0}^{c} f(x) d x=\int_{0}^{c} d x=c \\
& \text { and } \int_{0}^{c} f_{n}(x) d x=\int_{0}^{c} x^{1 /(2 n-1)} d x
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
=\frac{2 \mathrm{n}-1}{2 \mathrm{n}} \mathrm{c}^{2 \mathrm{n} /(2 \mathrm{n}-1)} \rightarrow \mathrm{c} \text { as } \mathrm{n} \rightarrow \infty
$$

Hence the series is term by term integrable in the above interval although 0 is a point of nonuniform convergence of the series.
48. $(3,4)$ We have

$$
\begin{aligned}
& \frac{g(z+h)-g(z)}{h}=\frac{\bar{f}(\overline{z+h}-f(\bar{z}))}{h}=\frac{\bar{f}(\bar{z}+\bar{h})-f(\bar{z})}{h} \\
&=\left(\frac{f(\bar{z}+\bar{h})-f(\bar{z})}{\bar{h}}\right) \\
& \operatorname{Lim}_{h \rightarrow 0} g \frac{(z+h)-g(z)}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{\overline{f(\bar{z}+\bar{h})-f(\bar{z})}}{\bar{h}} \\
&=\left(\frac{\left.\operatorname{Lim}_{h \rightarrow 0} \frac{f(\bar{z}+\bar{h})-f(\bar{z})}{\bar{h}}\right)}{}\right.
\end{aligned}
$$

Thus $g(z)$ has a derivative at $z$ and the derivative is equal to the complex conjugate of the derivative of $f$ at $\bar{z}$

Since this hold for all $z \in D^{*}$
Thus $g$ is analytic in

$$
D^{*}=\{z: \bar{z} \in d\}
$$

if $f^{\prime}(z)=0$ in domain $D$
Since $f(z)=u(x, y)+i v(x, y)$
now $f^{\prime}(z)=0 \Rightarrow u_{x}+i v_{x}=0$
$\Rightarrow \quad \mathrm{u}_{\mathrm{x}}=0=\mathrm{v}_{\mathrm{x}} \quad \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{D}$
By Cauchy riemann equations $u_{y}=v_{y}=0 \quad \forall(x, y) \in D$
so the gradient vector $\nabla_{u}=\left(u_{x}, u_{y}\right)=(0,0)$ is zero

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$\Rightarrow$ directional derivative of $u(x, y)$ is zero in all directions
Hence $\mathrm{u}(\mathrm{x}, \mathrm{y})$ is constant along a line segment joining two points.
Thus $f(z)$ is free from $z$
49.(3) By definition we know that

$$
\int_{C} f(z) d z=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f\left(\xi_{j}\right) \delta z_{j}
$$

Now

$$
\begin{aligned}
& \left|\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{f}\left(\xi_{\mathrm{j}}\right) \delta \mathrm{z}_{\mathrm{j}}\right| \leq \sum_{\mathrm{j}=1}^{\mathrm{n}}\left|\mathrm{f}\left(\xi_{\mathrm{j}}\right)\right|\left|\delta \mathrm{z}_{\mathrm{j}}\right| \\
& \leq \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{M}\left|\delta \mathrm{z}_{\mathrm{j}}\right|, \quad \because|\mathrm{f}(\mathrm{z})| \leq \mathrm{M}
\end{aligned}
$$

for all points z on C (given)
i.e. $\leq M \sum_{j=1}^{n}\left|\delta z_{i}\right|$

Now $\sum_{\mathrm{j}=1}^{\mathrm{n}}\left|\delta \mathrm{z}_{\mathrm{i}}\right|$ represents the sum of all the chord lengths joining points $\mathrm{zj}-1$ and zj , where $\mathrm{j}=$ $1,2,3, ., n$ and so this sum cannot be greater than (i.e. is equal to or less than) the length $\ell$ of the curve C .
$\therefore$ From (ii) we have

$$
\begin{equation*}
\left|\sum_{j=1}^{n} f\left(\xi_{j}\right) \delta z_{i}\right| \leq M \ell \tag{iii}
\end{equation*}
$$

Taking the limit $(\mathrm{n} \rightarrow \infty)$ of both sides of (iii), from (i) we get

$$
\left|\int_{C} f(\xi) \delta z\right| \leq \ell m
$$

Hence proved.
50. $(2,3)$ Since $x^{2}+2 x+2$ is irreducible over $Z_{5}[x]$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
$\Rightarrow \frac{Z_{5}[z]}{\left\langle x^{2}-2 x+2\right\rangle}$
is a field
$\Rightarrow$ no. of elements of field is $5^{2}=25$ and since 1 and 2 are only two divisors of 2
$\Rightarrow$ no. of subfields of $\frac{Z_{5}[x]}{\left\langle x^{2}+2 x+2\right\rangle}=2$
But $x^{2}-2 x+15$ is reducible over $Z_{5}[x]$
$\Rightarrow \quad \frac{Z_{5}[x]}{\left\langle x^{2}-2 x+5\right\rangle}$ is not a field
Hence not isomorphic to $\frac{Z_{5}[x]}{\left\langle x^{2}+2 x+2\right\rangle}$
$F[x]$
51.(1,4) We know if $P(x) \in F[x]$ then $\langle P(x)\rangle$ is a field iff $P(x)$ is irreducible polynomial over $F$. Now if $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}+1$, then if is irreducible over $\square$.
$P(x)=x^{2}-1=(x-1)(x+1)$ if is reducible over $\square$.
$P(x)=x^{3}-x^{2}+x-1=(x-1)\left(x^{2}+1\right)$ it is reducible over $\square$.
$P(x)=x^{2}+x+1$, if is irreducible over $\square$.
$\Rightarrow$ (a) and (d) option will be correct.
52. $(1,2,4)$ Here we are given $P_{3}(x)=x^{3}-5 x^{2}+17 x-3$,
where $0 \leq x \leq 4$
First of all, we change the interval from $[0,4]$ to $[-1,1]$ by using the transformation
Then

$$
P_{3}(z)=[2(z+1)] 3-5\left[4(z+1)^{2}\right]+17[2(z+1)]-3
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& =8\left(z^{3}+3 z^{2}+3 z+1\right)-20\left(z^{2}+2 z+1\right)+34(z+1)-3 \\
& =8 z^{3}+4 z_{2}+18 z+19,-1 \leq z \leq 1 \\
& =8\left[\frac{1}{4}\left(3 T_{1}+T_{3}\right)\right]+4\left[\left(T_{0}+T_{2}\right)\right]+18\left[T_{1}\right]+19\left[T_{0}\right], \text { express }
\end{aligned}
$$

expressing each power of $z$ in terms
o Chebyshev polynomials
$=21 \mathrm{~T}_{0}+24 \mathrm{~T}_{1}+2 \mathrm{~T}_{2}+2 \mathrm{~T}_{3}$, where $-1 \leq \mathrm{z} \leq 1$
Now truncating this polynomial at $T_{2}$, we have

$$
\begin{aligned}
& \max _{=-1 \leq \mathrm{z} \leq 1}\left|\mathrm{P}_{3}(\mathrm{z})-\left(21 \mathrm{~T}_{0}+24 \mathrm{~T}_{1}+2 \mathrm{~T}_{2}\right)\right| \\
& =\max _{-1 \leq \mathrm{z} \leq 1}\left|2 \mathrm{~T}_{3}\right|, \quad \text { where } \mathrm{T}_{3}(\mathrm{z})=4 z^{3}-3 z \\
& =2=\min _{-1 \leq \mathrm{z} \leq 1}\left|\mathrm{P}_{3}(z)-\left(21 \mathrm{~T}_{0}+24 \mathrm{~T}_{1}+2 \mathrm{~T}_{2}\right)\right|
\end{aligned}
$$

Hence the required approximation is

$$
\begin{align*}
P_{2}(z) & =21 T_{0}(z)=24 T_{1}(z)+2 T_{2}(z) \\
& =21(1)+24(z)+2\left(2 z^{2}-1\right) \ldots \tag{iii}
\end{align*}
$$

or $\quad P_{2}(z)=4 z^{2}+24 z+19$,
for which the maximum absolute error $\delta=2$ is as small as possible.
Now from (ii) we have $z=(x-2) / 2$
Substituting this value in (iii) we have

$$
\begin{aligned}
& \begin{aligned}
P_{2}(x) & =4\left[(x-2)^{2} / 4\right]+24[(x-2) / 2]+19 \\
& =\left(x^{2}-4 x+4\right)+12(x-2)+19
\end{aligned} \\
& \text { or } \quad P_{2}(x)=x^{2}+8 x-1
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Also we find that $\left|P_{3}(x)-P_{2}(x)\right|$

$$
\begin{aligned}
& =\left|\left(x^{3}-5 x^{2}+17 x-3\right)-\left(x^{2}+8 x-1\right)\right| \\
& =\left|x^{3}-6 x^{2} 9 x-2\right|=\delta=2
\end{aligned}
$$

for $\mathrm{x}=0,1,3$ and 4
53.( $1,2,3$ ) First we consider vectors $u_{1} u_{2} \ldots u_{n}$ is $\square^{n}$ form an orthonormal set if they are unit vectors and are orthogonal to each other where the dot product in $L^{n}$ is defined by ( $a_{1}$ $\left.a_{2} \ldots . . a_{n}\right) \cdot\left(b_{1} b_{2} \ldots . . b_{n}\right)=a_{1} \bar{b}_{1}+a_{2} \bar{b}+\ldots a_{n} \bar{p}_{n}$

Suppose $A$ is unitary and $R_{1}, R_{2} \ldots R_{n}$ are its rows then $\bar{R}_{1}{ }^{\top}, \bar{R}_{2}{ }^{\top}, \ldots \ldots . . \bar{R}_{n}{ }^{\top}$ are the columns of AH Let $A A^{H}+\left[c_{i j}\right]$ by matrix multiplication $c c_{i j}=R_{i} \bar{R}^{\top} J=R_{i} R_{j}$

Since A is unitary we have $A A H=1$
$A$ is orthogonal also multiplying $A$ and $A$ and setting each entry $C_{i j}$ equal to the corresponding entry in I yields the following $\mathrm{n}^{2}$ equations
$R_{i} \cdot R_{1}=1$
$R_{2} \cdot R_{1}=1 \ldots \ldots . R_{n} \cdot R_{n}=1$
and $R_{i} \cdot R_{j}=0$
for $i \neq j$
Thus the rows of $A$ are unit vectors and are orthogonal to each other
Hence they form an orthonormal set of vector
The condition $A^{\top} A=I$ show that the columns of $A$ also form an orthonormal set of vectors If we take vectors in $\square^{n}$ then only orthonormal vectors can follows the above process they may not unitary.
54.(1, 2) The given differential equation is

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{equation*}
\left[\frac{d}{d x}\left(x \frac{d}{d x}\right)-\frac{n^{2}}{x}\right] u=0 \tag{1}
\end{equation*}
$$

with the boundary conditions $u(0)=0$ and $u(1)=0$
Comparing the equation (1) with the operator

$$
\left[\frac{d}{d x}\left(p \frac{d}{d x}\right)+q\right]
$$

we have

$$
\mathrm{p}(\mathrm{x})=\mathrm{xp}(\xi)=\xi
$$

(4)

$$
\begin{equation*}
x^{2} \frac{d^{2} u}{d x^{2}}+x \frac{d u}{d x}-n^{2} u=0 \tag{5}
\end{equation*}
$$

$\Rightarrow \quad x^{2} \frac{d^{2} u}{d x^{2}}+x \frac{d u}{d x}-n^{2} u=0$
The general solution of the equation (5) is given by
$u(x)=A x^{n}+B x^{-n}$
The functions $u_{1}(x)=x_{n}$ and $u_{2}(x)=\left(\frac{1}{x^{n}}-x^{n}\right)$ are, respectively, linearly independent solutions of the equation (5) the satisfy the conditions $u(0)=0$ and $u(1)=0$ The Wronskian of $u_{1}(x)$ and $\mathrm{u}_{2}(\mathrm{x})$ is given by

$$
W\left[u_{1}(x), u_{2}(x)\right]=\left|\begin{array}{cc}
u_{1}(x) & u_{2}(x) \\
u_{1}^{\prime}(x) & u_{2}^{\prime}(x)
\end{array}\right|=\left|\begin{array}{cc}
x^{n} & \frac{1}{x^{n}}-x n \\
n x^{n-1} & -\frac{n}{x^{n+1}}-n x^{n-1}
\end{array}\right|=-\frac{2 n}{x} \neq 0,
$$

which shows that $u_{1}(x)$ and $u_{2}(x)$ are two linearly independent solutions.
We know than the Green's function $\mathrm{G}(\mathrm{x}, \xi)$ is given by

$$
\begin{gathered}
-\frac{1}{C} u_{1}(x) u_{2}(\xi), \quad x<\xi \\
G(x, \xi)=-\frac{1}{C} u 1(\xi) u_{2}(x), x>\xi
\end{gathered}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
where C is given by the Abel's formula
$u_{1}(x) u_{2}{ }^{\prime}(x)-u_{1}^{\prime}(x) u_{2}(\xi)=$
$\frac{C}{p(\xi)}$
where $u_{1}(\xi)=\xi_{n}$ and $u_{2}(\xi)=\frac{\frac{1}{\xi^{n}}-\xi^{n}}{}$
Substituting the value of $u_{1}(\xi), u_{2}(\xi)$, we have
The Green's function $\mathrm{G}(\mathrm{x}, \xi)$ becomes

$$
G(x, \xi)=\begin{aligned}
& \frac{x^{n}}{2 n \xi^{n}}\left(1-\xi^{2 n}\right), x<\xi \\
& \frac{\xi^{n}}{2 n x^{n}}\left(1-x^{2 n}\right), x>\xi
\end{aligned}
$$

55. $(1,3)$ Let $F=y^{\prime 2}-y^{2}+2 x y$
$\frac{\partial F}{\partial y}=-2 y+2 x$
$\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=2 y^{\prime \prime}$

Euler's equation

$$
\frac{\partial F}{\partial y^{\prime}}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0
$$

becomes

$$
-2 y+2 x-2 y^{\prime \prime}=0
$$

$$
\begin{array}{r}
y^{\prime \prime}+y=x \\
\left(D^{2}+1\right) y=x
\end{array}
$$

C.F. $=c_{1} \cos x+c_{2} \sin x$

PI $=\frac{1}{D^{2}+1} x=x$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Thus $y=c_{1} \cos x+c_{2} \sin x+x$
using boundary conditions

$$
\begin{aligned}
& x=0 \quad y=0 \\
& x=\frac{\pi}{2} y=0 \quad c_{1}=0 \\
& y=x-\frac{\pi}{2} \sin x
\end{aligned}
$$

56.(2) Let $I_{n}=\int_{a}^{x}(x-t)^{n-1} f(t) d t$
where n is a positive integer and a is a constant.
Differentiating both sides with respect to x ,
we get
$\frac{d I_{n}}{d x}=\int_{a}^{x} \frac{\partial}{\partial x}(x-t)^{n-1} f(t) d t+\left[(x-t)^{n-1} f(t)\right]_{t}=x \cdot 1-\left[(x-t)^{n-1} f(t)\right]_{t=a} \cdot 0$

$$
\begin{align*}
& =\int_{a}^{x}(n-1)(x-t)^{n-2} f(t) d t \\
& =(n-1) I_{n-1}(x) \tag{2}
\end{align*}
$$

Differentiating (2) with respect to $x$

$$
\begin{aligned}
\frac{d^{2} I_{n}}{d x^{2}} & =(n-1)^{\frac{d}{d x}}\left[I_{n-1},(x)\right] \\
& =(n-1)(n-2) I_{n-2},
\end{aligned}
$$

[using (1)]
Proceeding in this way, we get,

$$
\begin{aligned}
& \frac{d^{2} I_{n}}{d x^{n-1}}=(n-1)(n-2) \ldots 1 . \dot{I}_{1}(x) \\
& \quad=(n-1)!I_{1}(x)
\end{aligned}
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Now taking $\mathrm{n}=1$ in (1), we get
$I_{1}=\int_{a}^{x} f(t) d t=\int_{a}^{x} f\left(x_{1}\right) d x_{1}$
Putting $x=a$ in (1), we obtain
$\mathrm{I}_{\mathrm{n}}(1)=0$ for all n
Taking $\mathrm{n}=2$ in (2), we get

$$
\begin{align*}
& \frac{d I_{2}}{d x}=I_{1}(x) \\
& \therefore I_{2}=\int_{a}^{x} I_{1}\left(x_{2}\right) d x_{2} \\
& \quad=\quad \int_{a}^{x} \int_{a}^{x_{2}} f\left(x_{1}\right) d x_{1} d x_{2} \tag{4}
\end{align*}
$$

$$
\left[\because 1_{2}(1)=0\right]
$$

Putting $\mathrm{n}=3$ in (2), we have

$$
\begin{aligned}
& \frac{d I_{3}}{d x}=2 I_{2}(x) \\
\therefore & I_{3}=2 \int_{a}^{x} I_{2}(x) d x \\
& 2 \int_{a}^{x} \int_{a}^{x_{3}} \int_{a}^{x_{2}} f\left(x_{1}\right) d x_{1} d x_{2} d x_{3}
\end{aligned} \quad\left[\because I_{3}(1)=0\right]
$$

Proceeding in this way, we get

$$
\begin{aligned}
& I_{n}=(n-1)!\int_{a}^{x} \int_{a}^{x_{n}} \ldots \int_{a}^{x_{2}} F\left(x_{1}\right) d x_{1} d x_{2} \ldots . d x_{n} \\
& \text { or } \int_{a}^{x} \int_{a}^{x_{n}} \ldots \int_{a}^{x_{2}} f\left(x_{1}\right) d x_{1} d x_{2} \ldots . d x_{n}
\end{aligned}
$$

$$
=\frac{1}{(n-1)!} \int_{a}^{x}(x-t)^{n-1} f(t) d t .
$$

57. $(1,2,3.4)$ Let $h(x)=\operatorname{Sup}\left\{f_{1}(x), f_{2}(x) \ldots . . f_{n}(x)\right\}$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS
then $\{x: h(x)>\alpha\}=\bigcup_{i=1}^{n}\left\{x: f_{1}(x)>\alpha\right\}$ Since $f_{i}(x)$ are measurable the union of measurable functions is also measurable

$$
\text { Let } g(x)=\operatorname{Sup}_{n} f_{n}(x)
$$

then $\{x: g(x)>\alpha\}=\bigcup_{i=1}^{\infty}\left\{x: f_{i}(x)>\alpha\right\}$
Since $f_{i}(x)$ are measurable then union of measurable function is also measurable so $g$ is measurable.
again. Let $\mathrm{g}_{1}(\mathrm{x})=\inf \left\{\mathrm{f}_{\mathrm{i}}(\mathrm{x})\right\}$
then

$$
\left\{x: g_{1}(x)<\alpha\right\}=\bigcup_{i=1}^{\infty}\left\{x: f_{i}(x)<\alpha\right\}
$$

Since $f_{j}(x)$ are measurable the union of measurable function is also measurable so $g_{1}$ is measurable

Let $h_{1}(x)=\inf _{n} f_{n}(x)$
then

$$
\dot{U}\{x \cdot: \cdot f(x)<\alpha\}
$$

Since $f_{i}(x)$ are measurable the union of measurable function is also measurable so $h_{1}$ is measurable.

For $n \in I$ let

$$
\left.g_{n}(x)=\text { l.u.b. }\left\{f_{n}(x), f_{n+1}(x), f_{n+2}(x) \ldots\right\} \text { (a } x \leq b\right) .
$$

Then, solution of each gn is a measurable function, Moreover,

$$
f^{*}(x)=\lim _{n \rightarrow \infty} \quad(a \leq x \leq b) .
$$

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Also, for any $x \in[a, b]$,

$$
g_{1}(x) \geq g_{2}(x) \geq g_{3}(x) \geq \ldots .
$$

Hence, if $s \in R$,

$$
\left\{x \mid f^{*}(x)<s\right\}=\bigcup_{n=1}^{\infty}\left\{x \mid g_{n}(x)<s\right\} .
$$

It follows that $\mathrm{f}^{*}$ is measurable.

That $f_{*}$ is measurable may be proved similarly. Finally, if
$\left\{f_{n}\right\}_{n=1}^{\infty}$ converges pointwise to $f$, then $f$ $=f^{*}=f *$ and so $f$ is measurable.

Let $E$ be the set of $x$ in $[a, b]$ at which the statement.
$\lim _{n \rightarrow \infty} f_{n}(x)=(x)$
does not hold. Then, by hypothesis, E has measure zero. Define the functions $g_{n}(n \in I)$ and $g$ as follows:

$$
\begin{array}{lrl}
g_{n}(x)=f_{n}(x) & (x \notin E) ; & g(x)=f(x) \\
g_{n}(x)=0 & (x \in E) & (x \notin E) \\
& g(x)=0 & (x \in E) .
\end{array}
$$

Then each $\mathrm{g}_{\mathrm{n}}$ is measurable, Now, if $\mathrm{x} \in \mathrm{E}$, then

$$
\lim _{n \rightarrow \infty} g_{n}(x)=0=g(x) .
$$

Also, if $\mathrm{X} \notin \mathrm{E}$, then

$$
\lim _{n \rightarrow \infty} g_{n}(x)=\lim _{n \rightarrow \infty} f_{n}(x)=f(x)=g(x) .
$$

Hence $\left\{g_{n}\right\}_{n=1}^{\infty}$ converges pointwise (everywhere) to $g$ on $[a, b]$. Since each $g_{n}$ is measurable, thus g is measurable.
58. $(1,2,3,4)$ Let $x$ be a point of continuity of $F_{X}(x)$. Let $x>0$. We have,

$$
\begin{aligned}
& F X_{n}(x)=P\left[X_{n} \leq x\right] \\
& =P\left|\left\{X_{n} \leq x\right\} \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}\right|+P\left[\left\{X_{n} \leq x\right\} \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right] \\
& \leq P[X \leq X+\varepsilon]+P\left[\left|X_{n}-X\right| \geq \varepsilon\right] .
\end{aligned}
$$

Based on the inequality and the fact that $X_{n} \xrightarrow{P} X$, we see that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} F_{x_{n}}(x) \leq F_{x}(x+\varepsilon) . \tag{1}
\end{equation*}
$$

To get a lower bounded, we proceed similarly with the complement to show that

$$
P\left[X_{n}>x\right] \leq P[X \geq X-\varepsilon]+P\left[\left|X_{n}-X\right| \geq \varepsilon\right] .
$$

Hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{X_{n}}(x) \geq F_{X}(x-\varepsilon) . \tag{2}
\end{equation*}
$$

Using a relationship between $\overline{\lim }$ and $\underline{\lim }$, it follows from (1) and (2) that

$$
F_{x}(x-\varepsilon) \leq \lim _{n \rightarrow \infty} F_{x_{n}}(x) \leq \lim _{n \rightarrow \infty} F_{x_{n}}(x) \leq F_{x}(x+\epsilon) .
$$

Letting $\in \rightarrow 0$ gives us the desired result.
Let $\in>0$ be given. Then,
$\lim _{n \rightarrow \infty} P\left[\left|X_{n}-b\right| \leq \epsilon\right]=-\lim _{n \rightarrow \infty} F_{X_{n}}(b+\in)-\lim _{n \rightarrow \infty} F_{X_{n}}(b-\in-0)=1-0=1$,
which is the desired result.
Suppose $X_{n}$ converges to $X$ in distribution and $Y_{n}$ converges in probability to 0 . Then $X_{n}+Y_{n}$ converges to $X$ in distribution.

Suppose $X_{n}$ converges to $X$ in distribution and $g$ is a continuous function on the support of $X$.
Then $g\left(X_{n}\right)$ converges to $g(X)$ in distribution.
59. $(2,3)$ If $Q_{1}$ and $Q_{3}$ are the first and third quartiles respectively, we have

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{gathered}
\int_{0}^{Q_{1}} f(x) d x=\frac{1}{4} \Rightarrow \frac{1}{b^{2}} \int_{0}^{Q_{1}} x e^{-x^{2} / 2 b^{2}} d x=\frac{1}{4} . \quad \quad \text { Put } y=\frac{x^{2}}{2 b^{2}} \text { so that } d y=\frac{x}{b^{2}} d x . \\
\therefore \\
\int_{0}^{Q_{1}^{2} / 2 b^{2}} e^{-y} d y=\frac{1}{4} \Rightarrow\left|\frac{e^{-y}}{-1}\right|_{0}^{Q_{1}^{2} / 2 b^{2}}=\frac{1}{4} \Rightarrow 1-e^{-Q_{1}^{2} / 2 b^{2}}=\frac{1}{4} \Rightarrow e-Q_{1}^{2} / 2 b^{2}=\frac{3}{4}
\end{gathered}
$$

Thus

$$
-\frac{Q_{1}{ }^{2}}{2 b^{2}}=\log \left(\frac{3}{4}\right) \frac{Q_{1}{ }^{2}}{2 b^{2}}=\log \left(\frac{4}{3}\right) \Rightarrow Q_{1}=b \sqrt{2} \sqrt{\log (4 / 3)}
$$

Again we have $\int_{0}^{Q_{3}} f(x) d x=\frac{3}{4}$ which, on proceeding similarly, will give

$$
1-e^{Q_{3}^{2} / 2 b^{2}}=\frac{3}{4} \Rightarrow e^{-Q_{3}^{2} / 2 b^{2}}=\frac{1}{4} \Rightarrow Q_{3}=b \sqrt{2} \sqrt{\log 4}
$$

The distance between the quartiles is :

$$
Q_{3}-Q_{1}=b \sqrt{2}\{\sqrt{\log 4}-\sqrt{\log (4 / 3)}\}
$$

$$
\begin{aligned}
& \mu_{1}^{\prime}=\int_{0}^{\infty} x f(x) d x=\int_{0}^{\infty} x \frac{x}{b^{2}} e^{-x^{2} / 2 b^{2}} d x=\int_{0}^{\infty} b \sqrt{2} y^{1 / 2} d^{-y} d y \\
& =b \sqrt{2} \int_{0}^{\infty} e^{-y} y^{\frac{3}{2}-1} d y=b \sqrt{2} \Gamma(3 / 2)=b \sqrt{2} \frac{1}{2} \Gamma(1 / 2)=b \sqrt{2} \frac{\sqrt{\pi}}{2}=b \sqrt{\pi / 2} \\
& \mu_{2}{ }^{\prime}=\int_{0}^{\infty} x^{2} f(x) d x=\int_{0}^{\infty} x^{2} \frac{x}{b^{2}} e^{-x^{2} / 2 b^{2}} d x \\
& =2 b^{2} \int_{0}^{\infty} y e^{-y} d y,\left(y=x^{2} / 2 b^{2}\right)=2 b^{2} \Gamma(2)=2 b^{2} .1!=2 b^{2} \\
& \sigma^{2}=\mu_{2}=\mu_{2}-\mu_{1}^{\prime 2}=2 b^{2}-b^{2} \cdot \frac{\pi}{2}=b^{2}\left(2-\frac{\pi}{2}\right) \quad \Rightarrow \sigma=b \sqrt{\{2-(\pi / 2)\}} \\
& \therefore \quad \frac{Q_{1}-Q_{1}}{\sigma}=\frac{\sqrt{2}[\sqrt{\log 4}-\sqrt{\log (4 / 3)}]}{\sqrt{\{2-(\pi / 2)\}}}, \quad \text { which is independent of parameter 'b'. }
\end{aligned}
$$

60. $(2,3,4)$ On changing given differential equation into standard form.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\frac{x-1}{x^{2}(x+1)} \frac{d y}{d x}+\frac{2}{x^{2}(x+1)^{2}} y=0 \\
& P(x)=\frac{x-1}{x^{2}(x+1)} \quad Q(x)=\frac{2}{x^{2}(x+1)^{2}}
\end{aligned}
$$

$P(x)$ and $Q(x)$ are undefined at $x=0$ and $x=-1$ they are not analytic at $x=0$ and -1
$\Rightarrow x=0 f$ and $x=-1$ both are singular points

Also

$$
(x-0) P(x)=\frac{x-1}{x(x+1)}
$$

$$
(x-0)^{2} Q(x)=\frac{2}{(x+1)^{2}}
$$

$\Rightarrow p(x)$ is not analytic at $x=0$
$\Rightarrow \mathrm{x}=0$ is an irregular singular point

$$
(x+1) P(x)=\frac{(x-1)}{x^{2}}
$$

$(x+1)^{2} Q(x)=\frac{2}{x^{2}}$
$\Rightarrow$ both $(x+1) P(x)$ and $(x+1)^{2} Q(x)$ are analytic at $x=-1$
$\Rightarrow \mathrm{x}=-1$ is regular singular point

